RESUMEN
A new paramagnetic ligand, 4-(2'-4-(2''-furyl)-pyrimidyl)-1,2,3,5-dithiadiazolyl (furylpymDTDA) and three transition metal coordination complexes, M(hfac)2(furylpymDTDA) M = Mn, Co, Ni; hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato-), are reported. The solid-state structures are influenced by the geometry of the coordination sphere of the M(II) centers: trigonal (Mn) vs. octahedral (Co and Ni). While the hs-Mn(II) complex exhibits pairwise multi-centre 2-electron bonds (i.e., pancake bonds) between the planar π radical DTDA moieties, the hs-Co(II) and Ni(II) complexes crystallize with close contacts between coordinated furylpymDTDA radical ligands that define linear 1D arrays of molecular units. The magnetic data for the hs-Co(II) and Ni(II) complexes indicate ferromagnetic (FM) interactions between molecular units, apparently mediated by radical-radical contacts along the supramolecular chains. Computational analysis suggests proximity between regions of large α- and ß-spin density on neighbouring molecular sites enabling FM exchange, in accordance with the McConnell I mechanism. The magnetic data for the Ni(II) complex are consistent with a Heisenberg spin chain, whereas the hs-Co(II) complex exhibits Ising-like spin chain behaviour and a magnetic phase transition to an FM ordered state at 4.6 K.
RESUMEN
The new radical ligand 5,8-dimethyl-1,4-dioxonaphtho[2,3-d][1,2,3]dithiazolyl (1) is reported. Two crystal polymorphs, 1α and 1ß, differing in their pancake-bonded dimerization motif and S···O contact network, are identified. The self-assembly of Mn(II) metal ions with 1 leads to the formation of [Mn(hfac)2]3(1)2 that exhibits a Mn(II)-radical-Mn(II)-radical-Mn(II) linear arrangement of three Mn(hfac)2 units bridged by two radical ligands (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato-). Characterization by single-crystal X-ray diffraction of this Mn(II) complex packing structure reveals close noncovalent S···O contacts between the [Mn(hfac)2]3(1)2 units in one dimension along the b-c direction. The magnetic properties of the coordination complex are characterized by dc and ac susceptibility measurements on a microcrystalline solid. The magnetic data down to 4.8 K indicate the presence of effective ferromagnetic interactions (J/kB = +0.16 K) between the molecular ST = 13/2 units along the supramolecular chain involving noncovalent S···O contacts. Below 2.9 K, a non-zero out-of-phase component appears in the ac susceptibility, indicating the presence of a three-dimensional magnetic phase transition.
RESUMEN
The neutral radical 4-(2'-benzimidazolyl)-1,2,3,5-dithiadiazolyl (HbimDTDA) exhibits a first order phase transition around 270 K without symmetry breaking, preserving its orthorhombic Pbca space group between 340 and 100 K. Associated with this reversible single-crystal-to-single-crystal phase transition, thermal hysteresis of the magnetic susceptibility is observed. The low temperature (LT) phase is diamagnetic owing to pancake bonding between the π-radicals. In the paramagnetic high temperature (HT) phase, the pancake bonds are broken, and new electrostatic contacts are apparent. As a result of the dense 3D network of supramolecular contacts, which includes H-bonds, the HbimDTDA system provides the first example of magnetic bistability for a DTDA radical.
RESUMEN
Encapsulation of unstable guests is a powerful way to enhance their stability. The lifetimes of organic anions and their radicals produced by reduction are typically short on account of reactivity with oxygen while their larger sizes preclude use of traditional anion receptors. Here we demonstrate the encapsulation and noncovalent stabilization of organic radical anions by C-H hydrogen bonding in π-stacked pairs of cyanostar macrocycles having large cavities. Using electrogenerated tetrazine radical anions, we observe significant extension of their lifetimes, facile molecular switching, and extremely large stabilization energies. The guests form threaded pseudorotaxanes. Complexation extends the radical lifetimes from 2 h to over 20 days without altering its electronic structure. Electrochemical studies show tetrazines thread inside a pair of cyanostar macrocycles following voltage-driven reduction (+e-) of the tetrazine at -1.00 V and that the complex disassembles after reoxidation (-e-) at -0.05 V. This reoxidation is shifted 830 mV relative to the free tetrazine radical indicating it is stabilized by an unexpectedly large -80 kJ mol-1. The stabilization is general as shown using a dithiadiazolyl anion. This finding opens up a new approach to capturing and studying unstable anions and a radical anions when encapsulated by size-complementary anion receptors.
RESUMEN
A binuclear metal coordination complex of the first thiazyl-based biradical ligand 1 is reported (1 = 4,6-bis(1,2,3,5-dithiadiazolyl)pyrimidine; hfac =1,1,1,5,5,5,-hexafluoroacetylacetonato-). The Mn(hfac)2-biradical-Mn(hfac)2 complex 2 is a rare example of a discrete, molecular species employing a neutral bridging biradical ligand. It is soluble in common organic solvents and can be easily sublimed as a crystalline solid. Complex 2 has a spin ground state of S(T) = 4 resulting from antiferromagnetic coupling between the S(birad) = 1 biradical bridging ligand and two S(Mn) = 5/2 Mn(II) ions. Electrostatic contacts between atoms with large spin density promote a ferromagnetic arrangement of the moments of neighboring complexes in ribbon-like arrays. Weak antiferromagnetic coupling between these high-spin ribbons stabilizes an ordered antiferromagnetic ground state below 4.5 K. This is an unusual example of magnetic ordering in a molecular metal-radical complex, wherein the electrostatic contacts that direct the crystal packing are also responsible for providing an efficient exchange coupling pathway between molecules.
RESUMEN
A supramolecular species composed of a pair of nonequivalent Dy(III)-radical complexes exhibits single-molecule magnet (SMM) properties. The weak effective antiferromagnetic coupling between the Dy(III) ions can be compensated by application of a small (700 Oe) dc field, revealing the relaxation mode of the two distinct SMMs. These unique results illustrate how the dynamics of a supramolecular [Dy-Radical]2 SMM can be fine-tuned by the exchange-bias and an applied magnetic field.
RESUMEN
Metal complexes of the 4-(2'-pyrimidyl)-1,2,3,5-dithiadiazolyl (pymDTDA) neutral radical ligand and its selenium analogue (pymDSDA) are presented. The following series of metal ions has been studied using M(hfac)(2) as the coordination fragment of choice (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato): Mn(II), Co(II), Ni(II), and Zn(II). The binuclear cobalt and nickel complexes of pymDTDA both exhibit ferromagnetic (FM) coupling between the unpaired electrons on the ligand and the metal ion, while the binuclear zinc complex of pymDTDA is presented as a comparative example incorporating a diamagnetic metal ion. The binuclear manganese complex of pymDTDA, reported in a preliminary communication, is compared to the pymDSDA analogue, and new insight into the magnetic behavior reveals that intermolecular magnetic coupling, mediated by chalcogen-oxygen contacts, gives rise to a significant increase in the χT product at low temperature. Surprisingly, the binuclear nickel complex of pymDSDA forms dimers in the solid state, as do the mononuclear complexes of cobalt and nickel with pymDTDA. In addition, mixed mononuclear/binuclear complexes of Mn- and Zn(pymDTDA) have been identified.
RESUMEN
A previous analysis [Fatila et al. (2012). Dalton Trans. 41, 1352-1362] of the title complex, [Ce(2)(C(5)HF(6)O(2))(6)(C(4)H(10)O(2))(3)], had identified it as Ce(hfac)(3)(dme)(1.5) according to the (1)H NMR integration [hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate (1,1,1,5,5,5-hexafluoro-4-oxopent-2-en-2-olate) and dme = 1,2-dimethoxyethane]; however, it was not possible to determine the coordination environment unambiguously. The structural data presented here reveal that the complex is a binuclear species located on a crystallographic inversion center. Each Ce(III) ion is coordinated to three hfac ligands, one bidentate dme ligand and one monodentate (bridging) dme ligand, thus giving a coordination number of nine (CN = 9) to each Ce(III) ion. The atoms of the bridging dme ligand are unequally disordered over two sets of sites. In addition, in two of the -CF(3) groups, the F atoms are rotationally disordered over two sets of sites. This is the first crystal structure of a binuclear lanthanide ß-diketonate with a bridging dme ligand.
RESUMEN
In a new polymorphic form of dichloridotriphenylantimony, [Sb(C(6)H(5))(3)Cl(2)], there are two crystallographically unique molecules in the asymmetric unit and it has been determined that this polymorph is one of two kinetically favoured phases of pure dichloridotriphenylantimony, both of which have Z' > 1. A third polymorph, corresponding to (C(6)H(5))(3)SbCl(1.8)F(0.2), is also known and has Z' = 2. By contrast, the thermodynamically preferred polymorph of pure (C(6)H(5))(3)SbCl(2) has Z' = 1. A brief comparison of the known polymorphic forms of dichloridotriphenylantimony is presented.
RESUMEN
The crystal structure of a third polymorphic form of the known 4-(2,6-difluorophenyl)-1,2,3,5-dithiadiazolyl radical, C(7)H(3)F(2)N(2)S(2), is reported. This new polymorph represents a unique crystal-packing motif never before observed for 1,2,3,5-dithiadiazolyl (DTDA) radicals. In the two known polymorphic forms of the title compound, all of the molecules form cis-cofacial dimers, such that two molecules are pi-stacked with like atoms one on top of the other, a common arrangement for DTDA species. By contrast, the third polymorph, reported herein, contains two crystallographically unique molecules organized such that only 50% are dimerized, while the other 50% remain monomeric radicals. The dimerized molecules are arranged in the trans-antarafacial mode. This less common dimer motif for DTDA species is characterized by pi-pi interactions between the S atoms [S...S = 3.208 (1) A at 110 K], such that the two molecules of the dimer are related by a centre of inversion. The most remarkable aspect of this third polymorph is that the DTDA dimers are co-packed with monomers. The monomeric radicals are arranged in one-dimensional chains directed by close lateral intermolecular contacts between the two S atoms of one DTDA heterocycle and an N atom of a neighbouring coplanar DTDA heterocycle [S...N = 2.857 (2) and 3.147 (2) A at 110 K].
RESUMEN
A new paramagnetic ligand, betaDTDA, and its coordination complex with Fe(hfac)2 are reported (betaDTDA = 4-(benzothiazol-2'-yl)-1,2,3,5-dithiadiazolyl; hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato-). The neutral radical betaDTDA is the first dithiadiazolyl ligand designed to include an electropositive sulphur moiety outside the thiazyl heterocycle, increasing the capacity for supramolecular, structure-directing electrostatic contacts and enabling new pathways for magnetic exchange. The Fe(hfac)2(betaDTDA) complex is composed of a hs-Fe(ii) center with the three bidentate ligands arranged about the ion in a distorted octahedral 6-coordinate environment. The magnetic properties of crystalline Fe(hfac)2(betaDTDA) are consistent with strong antiferromagnetic (AF) coupling between the metal and ligand moments, giving rise to a well-defined Stotal = 3/2 ground state that is the only thermally populated state below 40 K. Below 4 K, this complex exhibits slow relaxation of the magnetization detected by ac susceptibility measurements consistent with a single-molecule magnet (SMM) behaviour.
RESUMEN
Synthesis and structural, magnetic and electrochemical characterization of the Ni(hfac) 2(pyDTDA) and the Fe(hfac) 2(pyDTDA) complexes are reported (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato-; pyDTDA = 4-(2'-pyridyl)-1,2,3,5-dithiadiazolyl). Unlike the previously reported Mn(II) and Cu(II) complexes, but similar to the Co(II) complex, the Ni(II) and Fe(II) complexes are not dimerized in the solid state, allowing for magnetic coupling between the metal ion and paramagnetic ligand to be readily obtained from solid state magnetic measurements: Ni complex, J/k B = +132(1) K, using H = -2 J{ S Ni. S Rad} and g Ni = 2.04(2) and g Rad = 1.99(2); Fe complex, J/k B = -60.3(3) K, using H = -2 J{ S Fe. S Rad} and g av = 2.11(2). The iron complex is unusually unstable. A thermal decomposition product is isolated wherein the coordinated pyDTDA ligand appears to have been transformed into a coordinated 2-(2'-pyridyl)-4,6-bis(trifluoromethyl)pyrimidine. The iron complex also yields a solution decomposition product in the presence of air that is best described as an oxygen bridged iron(III) tetramer with two hfac ligands on each of three iron atoms and two oxidized pyDTDA ligands chelated on the fourth.
RESUMEN
The coordination sphere of early lanthanide(iii) ions is highly versatile, exhibiting the ability to form 8-, 9-, and 10-coordinate complexes with the same ligand set. The ability to isolate 10-coordinate complexes decreases across the period, and the late lanthanides typically cannot support a coordination number higher than eight. Using two common, commercially available ligands, hfac (1,1,1,5,5,5-hexafluoroacetylacetonato-) and bpy (2,2'-bipyridine), the 8- and 10-coordinate series Ln(hfac)3(bpy) and Ln(hfac)3(bpy)2 (Ln = La-Sm) are compiled in a single investigation, demonstrating that the desired coordination number can be targeted through stoichiometry. Solvent-free syntheses of Ln(hfac)3(bpy) and Ln(hfac)3(bpy)2 complexes from Ln(hfac)3(H2O)3 precursors are investigated using a mechanochemical approach. Structural and spectroscopic properties as well as melting point trends are reported for the series.
RESUMEN
An achiral organic molecule adopts a chiral conformation, crystallizing in two morphologies: a racemic form, stable <70 °C, and a homochiral form, stable ≥70 °C. Upon seeding, crystal-to-crystal phase transitions occur reversibly between the racemic and chiral forms. Liquid-to-solid chiral crystallization is observed >90% of the time from the melt.
RESUMEN
A spin-bearing bis-bidentate ligand, designed from a pyrimidyl-substituted R-CN2S2 neutral radical, is used to co-ordinate two Mn(II) metal centres yielding a thermally stable complex with antiferromagnetic coupling between the ligand-centred spin and the metal-centred spins, and thus an overall ferrimagnetic coupling scheme with a ground state S = 9/2.
RESUMEN
[Sm(hfac)3(boaDTDA)]n is the first coordination compound of a thiazyl-based neutral radical ligand to exhibit ferromagnetic ordering; TC = 3 K. The [Sm(iii)-radical]n species is soluble in common organic solvents and can be sublimed quantitatively. A McConnell I mechanism is implicated in local exchange pathways that contribute to cooperative magnetic properties.
RESUMEN
Under aprotic conditions, the reaction of 4-amino-1,2-naphthoquinone with excess S2Cl2 generates 4,5-dioxo-naphtho[1,2-d][1,2,3]dithiazol-2-ium chloride in a typical Herz condensation. By contrast, prior literature reports an imine (NH) product, 4,5-dioxo-1H-naphtho[1,2-d][1,2,3]dithiazole, for the same reaction performed in acetic acid. Herein, the cation product is isolated with four different counter-anions (Cl(-), GaCl4(-), FeCl4(-) and OTf(-)). Reduction of the cation generates a neutral radical 1,2,3-dithiazolyl-o-naphthoquinone, with potential ligand properties. Further reduction generates a closed shell anion, isolated as a water-stable Li(+) complex and exhibiting O,O-bidentate chelation. The hydroxy (OH) isomer of the original imine (NH) product is reported, and this can be readily deprotonated and acylated (OAc). All species are structurally characterized. Solution redox behaviour and EPR are discussed where appropriate.
RESUMEN
The coordination complex of Ni(hfac)2 (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato) and the 4-(benzoxazol-2'-yl)-1,2,3,5-dithiadiazolyl (boaDTDA) neutral radical π-stacks in a one-dimensional "staircase" arrangement. This particular packing aligns regions of α and ß spin densities on neighbouring Ni(II)(hfac)2(boaDTDA) molecules. This complex exemplifies a McConnell I type mechanism, giving rise to intermolecular ferromagnetic exchange observed for the first time between metal-thiazyl complexes.
RESUMEN
The first coordination polymer of a bridging radical 1,2,3,5-dithiadiazolyl ligand is reported. Upon coordination with the La(hfac)3 fragment, the paramagnetic 4-(benzoxazol-2'-yl)-1,2,3,5-dithiadiazolyl (boaDTDA) ligand forms a one-dimensional (1D) alternating -[La(hfac)3-boaDTDA]n- polymer exhibiting ferromagnetic (FM) coupling between the radicals, mediated through the diamagnetic La(III) ion (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato).
Asunto(s)
Elementos de la Serie de los Lantanoides/química , Compuestos Organometálicos/química , Polímeros/química , Radicales Libres/química , Ligandos , Campos Magnéticos , Modelos Moleculares , Estructura MolecularRESUMEN
The first metal coordination complex of a radical ligand based on the 1,2,3-dithiazolyl heterocycle is reported. 6,7-Dimethyl-1,4-dioxo-naphtho[2,3-d][1,2,3]dithiazolyl acts as a bridging ligand in the volatile trinuclear Mn(hfac)(2)-Rad-Mn(hfac)(2)-Rad-Mn(hfac)(2) complex (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato-). The Mn(II) and radical ligand spins are coupled anti-ferromagnetically (AF) resulting in an S(T) = 13/2 spin ground state.