Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Mol Pharm ; 18(6): 2174-2188, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33890794

RESUMEN

The concept of using precipitation inhibitors (PIs) to sustain supersaturation is well established for amorphous formulations but less in the case of lipid-based formulations (LBF). This study applied a systematic in silico-in vitro-in vivo approach to assess the merits of incorporating PIs in supersaturated LBFs (sLBF) using the model drug venetoclax. sLBFs containing hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose acetate succinate (HPMCAS), polyvinylpyrrolidone (PVP), PVP-co-vinyl acetate (PVP/VA), Pluronic F108, and Eudragit EPO were assessed in silico calculating a drug-excipient mixing enthalpy, in vitro using a PI solvent shift test, and finally, bioavailability was assessed in vivo in landrace pigs. The estimation of pure interaction enthalpies of the drug and the excipient was deemed useful in determining the most promising PIs for venetoclax. The sLBF alone (i.e., no PI present) displayed a high initial drug concentration in the aqueous phase during in vitro screening. sLBF with Pluronic F108 displayed the highest venetoclax concentration in the aqueous phase and sLBF with Eudragit EPO the lowest. In vivo, the sLBF alone showed the highest bioavailability of 26.3 ± 14.2%. Interestingly, a trend toward a decreasing bioavailability was observed for sLBF containing PIs, with PVP/VA being significantly lower compared to sLBF alone. In conclusion, the ability of a sLBF to generate supersaturated concentrations of venetoclax in vitro was translated into increased absorption in vivo. While in silico and in vitro PI screening suggested benefits in terms of prolonged supersaturation, the addition of a PI did not increase in vivo bioavailability. The findings of this study are of particular relevance to pre-clinical drug development, where the high in vivo exposure of venetoclax was achieved using a sLBF approach, and despite the perceived risk of drug precipitation from a sLBF, including a PI may not be merited in all cases.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Composición de Medicamentos/métodos , Excipientes/química , Lípidos/química , Sulfonamidas/química , Administración Oral , Animales , Disponibilidad Biológica , Precipitación Química , Química Farmacéutica , Simulación por Computador , Desarrollo de Medicamentos , Masculino , Modelos Animales , Modelos Químicos , Solubilidad , Sus scrofa
2.
Bioorg Med Chem Lett ; 47: 128113, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33991628

RESUMEN

Through an internal virtual screen at GlaxoSmithKline a distinct class of 2-phenylimidazo[1,2-a]pyridine-6-carboxamide H-PGDS inhibitors were discovered. Careful evaluation of crystal structures and SAR led to a novel, potent, and orally active imidazopyridine inhibitor of H-PGDS, 20b. Herein, describes the identification of 2 classes of inhibitors, their syntheses, and their challenges.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Oxidorreductasas Intramoleculares/metabolismo , Estructura Molecular , Relación Estructura-Actividad
3.
Bioorg Med Chem ; 28(23): 115791, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33059303

RESUMEN

GlaxoSmithKline and Astex Pharmaceuticals recently disclosed the discovery of the potent H-PGDS inhibitor GSK2894631A 1a (IC50 = 9.9 nM) as part of a fragment-based drug discovery collaboration with Astex Pharmaceuticals. This molecule exhibited good murine pharmacokinetics, allowing it to be utilized to explore H-PGDS pharmacology in vivo. Yet, with prolonged dosing at higher concentrations, 1a induced CNS toxicity. Looking to attenuate brain penetration in this series, aza-quinolines, were prepared with the intent of increasing polar surface area. Nitrogen substitutions at the 6- and 8-positions of the quinoline were discovered to be tolerated by the enzyme. Subsequent structure activity studies in these aza-quinoline scaffolds led to the identification of 1,8-naphthyridine 1y (IC50 = 9.4 nM) as a potent peripherally restricted H-PGDS inhibitor. Compound 1y is efficacious in four in vivo inflammatory models and exhibits no CNS toxicity.


Asunto(s)
Compuestos Aza/química , Inhibidores Enzimáticos/química , Quinolinas/química , Animales , Sitios de Unión , Encéfalo/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Estabilidad de Medicamentos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Oxidorreductasas Intramoleculares/metabolismo , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación de Dinámica Molecular , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Ratas , Relación Estructura-Actividad
4.
Bioorg Med Chem ; 27(8): 1456-1478, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30858025

RESUMEN

With the goal of discovering more selective anti-inflammatory drugs, than COX inhibitors, to attenuate prostaglandin signaling, a fragment-based screen of hematopoietic prostaglandin D synthase was performed. The 76 crystallographic hits were sorted into similar groups, with the 3-cyano-quinoline 1a (FP IC50 = 220,000 nM, LE = 0.43) being a potent member of the 6,6-fused heterocyclic cluster. Employing SAR insights gained from structural comparisons of other H-PGDS fragment binding mode clusters, the initial hit 1a was converted into the 70-fold more potent quinoline 1d (IC50 = 3,100 nM, LE = 0.49). A systematic substitution of the amine moiety of 1d, utilizing structural information and array chemistry, with modifications to improve inhibitor stability, resulted in the identification of the 300-fold more active H-PGDS inhibitor tool compound 1bv (IC50 = 9.9 nM, LE = 0.42). This selective inhibitor exhibited good murine pharmacokinetics, dose-dependently attenuated PGD2 production in a mast cell degranulation assay and should be suitable to further explore H-PGDS biology.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Lipocalinas/antagonistas & inhibidores , Quinolinas/química , Quinolinas/farmacología , Animales , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacocinética , Humanos , Oxidorreductasas Intramoleculares/química , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/química , Lipocalinas/metabolismo , Masculino , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Quinolinas/farmacocinética
5.
Bioorg Med Chem Lett ; 28(10): 1958-1963, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29653895

RESUMEN

Hypothalamic CAMKK2 represents a potential mechanism for chemically affecting satiety and promoting weight loss in clinically obese patients. Single-digit nanomolar inhibitors of CAMKK2 were identified in three related ATP-competitive series. Limited optimization of kinase selectivity, solubility, and pharmacokinetic properties were undertaken on all three series, as SAR was often transferrable. Ultimately, a 2,4-diaryl 7-azaindole was optimized to afford a tool molecule that potently inhibits AMPK phosphorylation in a hypothalamus-derived cell line, is orally bioavailable, and crosses the blood-brain barrier. When dosed orally in rodents, compound 4 t limited ghrelin-induced food intake.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Administración Oral , Animales , Encéfalo/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Ghrelina/farmacología , Enlace de Hidrógeno , Indoles/química , Indoles/metabolismo , Concentración 50 Inhibidora , Ratones , Mutagénesis , Inhibidores de Proteínas Quinasas/metabolismo
6.
Bioorg Med Chem Lett ; 24(10): 2288-94, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24731273

RESUMEN

Two novel series of spirocyclic piperidine analogs appended to a pyrazolo[1,5-a]pyridine core were designed, synthesized and evaluated for their anti-HCV activity. A series of piperidine ketals afforded dispiro 6p which showed excellent in vitro anti-HCV activities (EC50 of 1.5nM and 1.2nM against genotype 1a and 1b replicons, respectively). A series of piperidine oxazolidinones afforded 27c which showed EC50's of 10.9nM and 6.1nM against 1a and 1b replicons, respectively. Both compounds 6p and 27c bound directly to non-structural NS4B protein in vitro (IC50's=10.2 and 30.4nM, respectively) and exhibited reduced potency in replicons containing resistance mutations encoding changes in the NS4B protein.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Hepacivirus/fisiología , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , Antivirales/síntesis química , Diseño de Fármacos , Hepacivirus/efectos de los fármacos , Hepacivirus/metabolismo , Humanos , Terapia Molecular Dirigida , Compuestos de Espiro/síntesis química
7.
J Comput Chem ; 33(2): 189-202, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22042689

RESUMEN

We introduce a toolset of program libraries collectively titled multipurpose atom-typer for CHARMM (MATCH) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion of multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges, and force field parameters are achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In this work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond charge increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM general force field (Vanommeslaeghe, et al., J Comput Chem 2010, 31, 671), one million molecules from the PubChem database of small molecules are typed, parameterized, and minimized.


Asunto(s)
Teoría Cuántica , Programas Informáticos , Algoritmos , Bases de Datos Factuales
8.
Mon Not R Astron Soc ; 517(3): 3181-3199, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36311180

RESUMEN

At least one in five of all planetary nebulae are the product of a common envelope (CE) interaction, where the companion in-spirals into the envelope of an asymptotic giant branch (AGB) star ejecting the nebula and leaving behind a compact binary. In this work we carry out 3D smoothed particle hydrodynamics simulations of the CE interaction between a 1.7 M⊙ AGB star and a 0.6 M⊙ companion. We model the AGB structure using a 1D stellar model taken at the seventh thermal pulse. The interaction takes place when the giant is on the expanding phase of the seventh thermal pulse and has a radius of 250 R⊙. The post-CE orbital separations varies between 20 and 31 R⊙, with the inclusion of recombination energy resulting in wider separations. Based on the observed short in-spiral time-scales, we suggest that thermal pulses can trigger CEs, extending the ability of AGB stars to capture companions into CEs, that would lead to the prediction of a larger population of post-AGB, post-CE binaries. Simulations that include a tabulated equation of state unbind a great deal more gas, likely unbinding the entire envelope on short time-scales. The shape of the CE after the in-spiral is more spherical for AGB than red giant branch stars, and even more so if recombination energy is included. We expect that the planetary nebula formed from this CE will have different features from those predicted by Zou et al. 2020.

9.
J Med Chem ; 65(9): 6926-6939, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35500041

RESUMEN

Many critical decisions faced in early discovery require a thorough understanding of the dynamic behavior of pharmacological pathways following target engagement. From fundamental decisions on the optimal target to pursue and the ultimate drug product profile (combination of modality, potency, and compound properties) expected to elicit the desired clinical outcome to tactical program decisions such as what chemical series to pursue, what chemical properties require optimization, and what compounds to synthesize and progress, all demand detailed consideration of pharmacodynamics. Model-based target pharmacology assessment (mTPA) is a computational approach centered around large-scale virtual exploration of pharmacokinetic and pharmacodynamic models built early in discovery to guide these decisions. The present work summarizes several examples (use cases) from programs at GlaxoSmithKline that demonstrate the utility of mTPA throughout the drug discovery lifecycle.


Asunto(s)
Diseño de Fármacos , Farmacología , Descubrimiento de Drogas
10.
Acta Crystallogr C ; 66(Pt 3): o147-50, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20203413

RESUMEN

The title compound, C(4)H(10)N(3)O(2)(+) x C(2)H(2)NO(3)(-) x C(2)H(3)NO(3), contains at least 11 distinct hydrogen-bond interactions showing a great variety of bond strengths. The shortest and strongest hydrogen bond [O...O = 2.5004 (12) A] is found between the uncharged oxamic acid molecule and the oxamate monoanion. The grouping formed by such a strong hydrogen bond can thus be considered as a hydrogen bis(oxamate) monoanion. It lacks crystallographic symmetry and the two oxamate groups have different conformations, showing an asymmetric hydrogen-bond interaction. Significantly, the asymmetry allows us to draw a direct comparison of site basicity for the two inequivalent carboxylate O atoms in the planar oxamate anion. The constituent molecular ions of (I) form ribbons, where all amide and carboxylate groups are coplanar. Graph-set analysis of the hydrogen-bonded networks reveals the R(2)(2)(10) and R(2)(2)(9) homodromic nets as important structure-directing motifs, which appear to be a common feature of many oxamate-containing compounds.


Asunto(s)
Ácido Oxámico/análogos & derivados , Ácido Oxámico/química , Cristalografía por Rayos X , Enlace de Hidrógeno , Iones/química , Conformación Molecular , Estructura Molecular
11.
Eur J Pharm Sci ; 141: 105113, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31655207

RESUMEN

Mesoporous silica has emerged as an enabling formulation for poorly soluble active pharmaceutical ingredients (APIs). Unlike other formulations, mesoporous silica typically does not inhibit precipitation of supersaturated API therefore, a suitable precipitation inhibitor (PI) should be added to increase absorption from the gastrointestinal (GI) tract. However, there is limited research about optimal processes for combining PIs with silica formulations. Typically, the PI is added by simply blending the API-loaded silica mechanically with the selected PI. This has the drawback of an additional blending step and may also not be optimal with regard to release of drug and PI. By contrast, loading PI simultaneously with the API onto mesoporous silica, i.e. co-incorporation, is attractive from both a performance and practical perspective. The aim of this study was to demonstrate the utility of a co-incorporation approach for combining PIs with silica formulations, and to develop a mechanistic rationale for improvement of the performance of silica formulations using the co-incorporation approach. The results indicate that co-incorporating HPMCAS with glibenclamide onto silica significantly improved the extent and duration of drug supersaturation in single-medium and transfer dissolution experiments. Extensive spectroscopic characterization of the formulation revealed that the improved performance was related to the formation of drug-polymer interactions already in the solid state; the immobilization of API-loaded silica on HPMCAS plates, which prevents premature release and precipitation of API; and drug-polymer proximity on disintegration of the formulation, allowing for rapid onset of precipitation inhibition. The data suggests that co-incorporating the PI with the API is appealing for silica formulations from both a practical and formulation performance perspective.


Asunto(s)
Portadores de Fármacos/química , Gliburida/química , Hipoglucemiantes/química , Metilcelulosa/análogos & derivados , Dióxido de Silicio/química , Precipitación Química , Liberación de Fármacos , Metilcelulosa/química , Porosidad
12.
J Med Chem ; 63(16): 8667-8682, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32243158

RESUMEN

Artificial intelligence and machine learning have demonstrated their potential role in predictive chemistry and synthetic planning of small molecules; there are at least a few reports of companies employing in silico synthetic planning into their overall approach to accessing target molecules. A data-driven synthesis planning program is one component being developed and evaluated by the Machine Learning for Pharmaceutical Discovery and Synthesis (MLPDS) consortium, comprising MIT and 13 chemical and pharmaceutical company members. Together, we wrote this perspective to share how we think predictive models can be integrated into medicinal chemistry synthesis workflows, how they are currently used within MLPDS member companies, and the outlook for this field.


Asunto(s)
Técnicas de Química Sintética/métodos , Química Farmacéutica/métodos , Aprendizaje Automático , Industria Química/métodos , Descubrimiento de Drogas/métodos , Modelos Químicos , Investigación Farmacéutica/métodos
13.
Eur J Pharm Sci ; 132: 142-156, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-30877067

RESUMEN

Supersaturating formulations are widely used to improve the oral bioavailability of poorly soluble drugs. However, supersaturated solutions are thermodynamically unstable and such formulations often must include a precipitation inhibitor (PI) to sustain the increased concentrations to ensure that sufficient absorption will take place from the gastrointestinal tract. Recent advances in understanding the importance of drug-polymer interaction for successful precipitation inhibition have been encouraging. However, there still exists a gap in how this newfound understanding can be applied to improve the efficiency of PI screening and selection, which is still largely carried out with trial and error-based approaches. The aim of this study was to demonstrate how drug-polymer mixing enthalpy, calculated with the Conductor like Screening Model for Real Solvents (COSMO-RS), can be used as a parameter to select the most efficient precipitation inhibitors, and thus realize the most successful supersaturating formulations. This approach was tested for three different Biopharmaceutical Classification System (BCS) II compounds: dipyridamole, fenofibrate and glibenclamide, formulated with the supersaturating formulation, mesoporous silica. For all three compounds, precipitation was evident in mesoporous silica formulations without a precipitation inhibitor. Of the nine precipitation inhibitors studied, there was a strong positive correlation between the drug-polymer mixing enthalpy and the overall formulation performance, as measured by the area under the concentration-time curve in in vitro dissolution experiments. The data suggest that a rank-order based approach using calculated drug-polymer mixing enthalpy can be reliably used to select precipitation inhibitors for a more focused screening. Such an approach improves efficiency of precipitation inhibitor selection, whilst also improving the likelihood that the most optimal formulation will be realized.


Asunto(s)
Dipiridamol/química , Composición de Medicamentos/métodos , Fenofibrato/química , Gliburida/química , Modelos Químicos , Polímeros/química , Precipitación Química , Estabilidad de Medicamentos , Estructura Molecular , Dióxido de Silicio/química , Solubilidad , Solventes/química , Termodinámica
14.
Pharmaceutics ; 11(11)2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31689980

RESUMEN

Amorphous formulation technologies to improve oral absorption of poorly soluble active pharmaceutical ingredients (APIs) have become increasingly prevalent. Currently, polymer-based amorphous formulations manufactured by spray drying, hot melt extrusion (HME), or co-precipitation are most common. However, these technologies have challenges in terms of the successful stabilization of poor glass former compounds in the amorphous form. An alternative approach is mesoporous silica, which stabilizes APIs in non-crystalline form via molecular adsorption inside nano-scale pores. In line with these considerations, two poor glass formers, haloperidol and carbamazepine, were formulated as polymer-based solid dispersion via HME and with mesoporous silica, and their stability was compared under accelerated conditions. Changes were monitored over three months with respect to solid-state form and dissolution. The results were supported by solid-state nuclear magnetic resonance spectroscopy (SS-NMR) and scanning electron microscopy (SEM). It was demonstrated that mesoporous silica was more successful than HME in the stabilization of the selected poor glass formers. While both drugs remained non-crystalline during the study using mesoporous silica, polymer-based HME formulations showed recrystallization after one week. Thus, mesoporous silica represents an attractive technology to extend the formulation toolbox to poorly soluble poor glass formers.

15.
J Pharm Pharmacol ; 71(4): 483-509, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29770440

RESUMEN

OBJECTIVES: Supersaturating formulations hold great promise for delivery of poorly soluble active pharmaceutical ingredients (APIs). To profit from supersaturating formulations, precipitation is hindered with precipitation inhibitors (PIs), maintaining drug concentrations for as long as possible. This review provides a brief overview of supersaturation and precipitation, focusing on precipitation inhibition. Trial-and-error PI selection will be examined alongside established PI screening techniques. Primarily, however, this review will focus on recent advances that utilise advanced analytical techniques to increase mechanistic understanding of PI action and systematic PI selection. KEY FINDINGS: Advances in mechanistic understanding have been made possible by the use of analytical tools such as spectroscopy, microscopy and mathematical and molecular modelling, which have been reviewed herein. Using these techniques, PI selection can be guided by molecular rationale. However, more work is required to see widespread application of such an approach for PI selection. SUMMARY: Precipitation inhibitors are becoming increasingly important in enabling formulations. Trial-and-error approaches have seen success thus far. However, it is essential to learn more about the mode of action of PIs if the most optimal formulations are to be realised. Robust analytical tools, and the knowledge of where and how they can be applied, will be essential in this endeavour.


Asunto(s)
Precipitación Química/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas/administración & dosificación , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Humanos , Modelos Moleculares , Preparaciones Farmacéuticas/química , Solubilidad , Tecnología Farmacéutica/métodos
16.
J Pharm Pharmacol ; 71(4): 464-482, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30070363

RESUMEN

OBJECTIVES: This review highlights aspects of drug hydrophobicity and lipophilicity as determinants of different oral formulation approaches with specific focus on enabling formulation technologies. An overview is provided on appropriate formulation selection by focussing on the physicochemical properties of the drug. KEY FINDINGS: Crystal lattice energy and the octanol-water partitioning behaviour of a poorly soluble drug are conventionally viewed as characteristics of hydrophobicity and lipophilicity, which matter particularly for any dissolution process during manufacturing and regarding drug release in the gastrointestinal tract. Different oral formulation strategies are discussed in the present review, including lipid-based delivery, amorphous solid dispersions, mesoporous silica, nanosuspensions and cyclodextrin formulations. SUMMARY: Current literature suggests that selection of formulation approaches in pharmaceutics is still highly dependent on the availability of technological expertise in a company or research group. Encouraging is that, recent advancements point to more structured and scientifically based development approaches. More research is still needed to better link physicochemical drug properties to pharmaceutical formulation design.


Asunto(s)
Química Farmacéutica/métodos , Diseño de Fármacos , Preparaciones Farmacéuticas/administración & dosificación , Administración Oral , Sistemas de Liberación de Medicamentos , Desarrollo de Medicamentos/métodos , Liberación de Fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Preparaciones Farmacéuticas/química , Solubilidad
17.
J Pharm Pharmacol ; 71(4): 441-463, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29978475

RESUMEN

OBJECTIVES: Solubility parameters have been used for decades in various scientific fields including pharmaceutics. It is, however, still a field of active research both on a conceptual and experimental level. This work addresses the need to review solubility parameter applications in pharmaceutics of poorly water-soluble drugs. KEY FINDINGS: An overview of the different experimental and calculation methods to determine solubility parameters is provided, which covers from classical to modern approaches. In the pharmaceutical field, solubility parameters are primarily used to guide organic solvent selection, cocrystals and salt screening, lipid-based delivery, solid dispersions and nano- or microparticulate drug delivery systems. Solubility parameters have been applied for a quantitative assessment of mixtures, or they are simply used to rank excipients for a given drug. SUMMARY: In particular, partial solubility parameters hold great promise for aiding the development of poorly soluble drug delivery systems. This is particularly true in early-stage development, where compound availability and resources are limited. The experimental determination of solubility parameters has its merits despite being rather labour-intensive because further data can be used to continuously improve in silico predictions. Such improvements will ensure that solubility parameters will also in future guide scientists in finding suitable drug formulations.


Asunto(s)
Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas/administración & dosificación , Administración Oral , Desarrollo de Medicamentos/métodos , Excipientes/química , Humanos , Lípidos/química , Tamaño de la Partícula , Preparaciones Farmacéuticas/química , Solubilidad , Solventes/química , Agua/química
18.
J Med Chem ; 62(7): 3254-3267, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30763090

RESUMEN

We previously described the discovery of GSK5852 (1), a non-nucleoside polymerase (NS5B) inhibitor of hepatitis C virus (HCV), in which an N-benzyl boronic acid was essential for potent antiviral activity. Unfortunately, facile benzylic oxidation resulted in a short plasma half-life (5 h) in human volunteers, and a backup program was initiated to remove metabolic liabilities associated with 1. Herein, we describe second-generation NS5B inhibitors including GSK8175 (49), a sulfonamide- N-benzoxaborole analog with low in vivo clearance across preclinical species and broad-spectrum activity against HCV replicons. An X-ray structure of NS5B protein cocrystallized with 49 revealed unique protein-inhibitor interactions mediated by an extensive network of ordered water molecules and the first evidence of boronate complex formation within the binding pocket. In clinical studies, 49 displayed a 60-63 h half-life and a robust decrease in viral RNA levels in HCV-infected patients, thereby validating our hypothesis that reducing benzylic oxidation would improve human pharmacokinetics and lower efficacious doses relative to 1.


Asunto(s)
Antivirales/farmacología , Ácidos Borónicos/farmacología , Diseño de Fármacos , Hepacivirus/efectos de los fármacos , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Animales , Antivirales/química , Antivirales/farmacocinética , Ácidos Borónicos/química , Ácidos Borónicos/farmacocinética , Cristalografía por Rayos X , Perros , Semivida , Humanos , Macaca fascicularis , Ratones , Estructura Molecular , Inhibidores de la Síntesis del Ácido Nucleico/química , Inhibidores de la Síntesis del Ácido Nucleico/farmacocinética , Ratas
20.
Sci Rep ; 8(1): 10779, 2018 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-30018450

RESUMEN

Kabuki Syndrome (KS) is a rare disorder characterized by distinctive facial features, short stature, skeletal abnormalities, and neurodevelopmental deficits. Previously, we showed that loss of function of RAP1A, a RAF1 regulator, can activate the RAS/MAPK pathway and cause KS, an observation recapitulated in other genetic models of the disorder. These data suggested that suppression of this signaling cascade might be of therapeutic benefit for some features of KS. To pursue this possibility, we performed a focused small molecule screen of a series of RAS/MAPK pathway inhibitors, where we tested their ability to rescue disease-relevant phenotypes in a zebrafish model of the most common KS locus, kmt2d. Consistent with a pathway-driven screening paradigm, two of 27 compounds showed reproducible rescue of early developmental pathologies. Further analyses showed that one compound, desmethyl-Dabrafenib (dmDf), induced no overt pathologies in zebrafish embryos but could rescue MEK hyperactivation in vivo and, concomitantly, structural KS-relevant phenotypes in all KS zebrafish models (kmt2d, kmd6a and rap1). Mass spectrometry quantitation suggested that a 100 nM dose resulted in sub-nanomolar exposure of this inhibitor and was sufficient to rescue both mandibular and neurodevelopmental defects. Crucially, germline kmt2d mutants recapitulated the gastrulation movement defects, micrognathia and neurogenesis phenotypes of transient models; treatment with dmDf ameliorated all of them significantly. Taken together, our data reinforce a causal link between MEK hyperactivation and KS and suggest that chemical suppression of BRAF might be of potential clinical utility for some features of this disorder.


Asunto(s)
Anomalías Múltiples/prevención & control , Cara/anomalías , Enfermedades Hematológicas/prevención & control , Imidazoles/farmacología , Oximas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Enfermedades Vestibulares/prevención & control , Pez Cebra/crecimiento & desarrollo , Anomalías Múltiples/patología , Animales , Anomalías Craneofaciales/prevención & control , Cara/patología , Enfermedades Hematológicas/patología , Imidazoles/efectos adversos , Imidazoles/química , Anomalías Maxilomandibulares/prevención & control , Sistema de Señalización de MAP Quinasas , Oximas/efectos adversos , Oximas/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Pruebas de Toxicidad , Enfermedades Vestibulares/patología , Pez Cebra/embriología , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA