Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 16(20): e1906426, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32323486

RESUMEN

Neuroblastoma (NB) tumor substantially contributes to childhood cancer mortality. The design of novel drugs targeted to specific molecular alterations becomes mandatory, especially for high-risk patients burdened by chemoresistant relapse. The dysregulated expression of MYCN, ALK, and LIN28B and the diminished levels of miR-34a and let-7b are oncogenic in NB. Due to the ability of miRNA-mimics to recover the tumor suppression functions of miRNAs underexpressed into cancer cells, safe and efficient nanocarriers selectively targeted to NB cells and tested in clinically relevant mouse models are developed. The technology exploits the nucleic acids negative charges to build coated-cationic liposomes, then functionalized with antibodies against GD2 receptor. The replenishment of miR-34a and let-7b by NB-targeted nanoparticles, individually and more powerfully in combination, significantly reduces cell division, proliferation, neoangiogenesis, tumor growth and burden, and induces apoptosis in orthotopic xenografts and improves mice survival in pseudometastatic models. These functional effects highlight a cooperative down-modulation of MYCN and its down-stream targets, ALK and LIN28B, exerted by miR-34a and let-7b that reactivate regulatory networks leading to a favorable therapeutic response. These findings demonstrate a promising therapeutic efficacy of miR-34a and let-7b combined replacement and support its clinical application as adjuvant therapy for high-risk NB patients.


Asunto(s)
MicroARNs , Nanopartículas , Neuroblastoma , Animales , Línea Celular Tumoral , Proliferación Celular , Niño , Humanos , Ratones , MicroARNs/genética , Recurrencia Local de Neoplasia , Proteínas de Unión al ARN
2.
Cancer Immunol Res ; 9(4): 415-429, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33500272

RESUMEN

Metabolic dysregulation is a hallmark of cancer. Many tumors exhibit auxotrophy for various amino acids, such as arginine, because they are unable to meet the demand for these amino acids through endogenous production. This vulnerability can be exploited by employing therapeutic strategies that deplete systemic arginine in order to limit the growth and survival of arginine auxotrophic tumors. Pegzilarginase, a human arginase-1 enzyme engineered to have superior stability and enzymatic activity relative to the native human arginase-1 enzyme, depletes systemic arginine by converting it to ornithine and urea. Therapeutic administration of pegzilarginase in the setting of arginine auxotrophic tumors exerts direct antitumor activity by starving the tumor of exogenous arginine. We hypothesized that in addition to this direct effect, pegzilarginase treatment indirectly augments antitumor immunity through increased antigen presentation, thus making pegzilarginase a prime candidate for combination therapy with immuno-oncology (I-O) agents. Tumor-bearing mice (CT26, MC38, and MCA-205) receiving pegzilarginase in combination with anti-PD-L1 or agonist anti-OX40 experienced significantly increased survival relative to animals receiving I-O monotherapy. Combination pegzilarginase/immunotherapy induced robust antitumor immunity characterized by increased intratumoral effector CD8+ T cells and M1 polarization of tumor-associated macrophages. Our data suggest potential mechanisms of synergy between pegzilarginase and I-O agents that include increased intratumoral MHC expression on both antigen-presenting cells and tumor cells, and increased presence of M1-like antitumor macrophages. These data support the clinical evaluation of I-O agents in conjunction with pegzilarginase for the treatment of patients with cancer.


Asunto(s)
Antineoplásicos/farmacología , Arginasa/farmacología , Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Receptores OX40/antagonistas & inhibidores , Traslado Adoptivo , Animales , Arginasa/análisis , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoterapia , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Receptores OX40/metabolismo
3.
Mol Cancer Ther ; 13(10): 2352-60, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25053820

RESUMEN

miR34a is a tumor-suppressor miRNA that functions within the p53 pathway to regulate cell-cycle progression and apoptosis. With apparent roles in metastasis and cancer stem cell development, miR34a provides an interesting opportunity for therapeutic development. A mimic of miR34a was complexed with an amphoteric liposomal formulation and tested in two different orthotopic models of liver cancer. Systemic dosing of the formulated miR34a mimic increased the levels of miR34a in tumors by approximately 1,000-fold and caused statistically significant decreases in the mRNA levels of several miR34a targets. The administration of the formulated miR34a mimic caused significant tumor growth inhibition in both models of liver cancer, and tumor regression was observed in more than one third of the animals. The antitumor activity was observed in the absence of any immunostimulatory effects or dose-limiting toxicities. Accumulation of the formulated miR34a mimic was also noted in the spleen, lung, and kidney, suggesting the potential for therapeutic use in other cancers.


Asunto(s)
Materiales Biomiméticos/administración & dosificación , Neoplasias Hepáticas/tratamiento farmacológico , MicroARNs/genética , Animales , Materiales Biomiméticos/efectos adversos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Hepáticas/genética , Ratones Endogámicos NOD , Ratones SCID , ARN Mensajero/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA