Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exp Cell Res ; 402(1): 112525, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33662366

RESUMEN

Cells dividing in the plane of epithelial tissues proceed by polarized constriction of the actomyosin contractile ring, leading to asymmetric ingression of the plasma mem brane. Asymmetric cytokinesis results in the apical positioning of the actomyosin contractile ring and ultimately of the midbody. Studies have indicated that the contractile ring is associated with adherens junctions, whose role is to maintain epithelial tissue cohesion. However, it is yet unknown when the contractile ring becomes associated with adherens junctions in epithelial cells. Here, we examined contractile ring formation and activation in the epithelium of Xenopus embryos and explored the implication of adherens junctions in the contractile ring formation. We show that accumulation of proteins involved in contractile ring formation and activation is polarized, starting at apical cell-cell contacts at the presumptive division site and spreading within seconds towards the cell basal side. We also show that adherens junctions are involved in the kinetics of contractile ring formation. Our study reveals that the link between the adherens junctions and the contractile ring is established from the onset of cytokinesis.


Asunto(s)
Uniones Adherentes/genética , Desarrollo Embrionario/genética , Células Epiteliales/metabolismo , Xenopus laevis/genética , Citoesqueleto de Actina/genética , Actomiosina/genética , Animales , División Celular/genética , Polaridad Celular/genética , Proteínas Contráctiles/genética , Citocinesis/genética , Embrión no Mamífero , Células Epiteliales/citología , Xenopus laevis/crecimiento & desarrollo
2.
Cell Mol Life Sci ; 78(4): 1765-1779, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32789689

RESUMEN

Maintaining the integrity of the mitotic spindle in metaphase is essential to ensure normal cell division. We show here that depletion of microtubule-associated protein ATIP3 reduces metaphase spindle length. Mass spectrometry analyses identified the microtubule minus-end depolymerizing kinesin Kif2A as an ATIP3 binding protein. We show that ATIP3 controls metaphase spindle length by interacting with Kif2A and its partner Dda3 in an Aurora kinase A-dependent manner. In the absence of ATIP3, Kif2A and Dda3 accumulate at spindle poles, which is consistent with reduced poleward microtubule flux and shortening of the spindle. ATIP3 silencing also limits Aurora A localization to the poles. Transfection of GFP-Aurora A, but not kinase-dead mutant, rescues the phenotype, indicating that ATIP3 maintains Aurora A activity on the poles to control Kif2A targeting and spindle size. Collectively, these data emphasize the pivotal role of Aurora kinase A and its mutual regulation with ATIP3 in controlling spindle length.


Asunto(s)
Aurora Quinasa A/genética , Cinesinas/genética , Fosfoproteínas/genética , Huso Acromático/genética , Proteínas Supresoras de Tumor/genética , Células HeLa , Humanos , Metafase , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Mitosis/genética
3.
J Cell Sci ; 132(10)2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31028180

RESUMEN

During mitosis, the cell sequentially constructs two microtubule-based spindles to ensure faithful segregation of chromosomes. A bipolar spindle first pulls apart the sister chromatids, then a central spindle further separates them away. Although the assembly of the first spindle is well described, the assembly of the second remains poorly understood. We report here that the inhibition of Aurora A leads to an absence of the central spindle resulting from a lack of nucleation of microtubules in the midzone. In the absence of Aurora A, the HURP (also known as DLGAP5) and NEDD1 proteins that are involved in nucleation of microtubules fail to concentrate in the midzone. HURP is an effector of RanGTP, whereas NEDD1 serves as an anchor for the γ-tubulin ring complex (γTURC). Interestingly, Aurora A phosphorylates HURP and NEDD1 during assembly of the initial bipolar spindle. We show here that the expression of a NEDD1 isoform mimicking phosphorylation by Aurora A is sufficient to restore microtubule nucleation in the midzone under conditions of Aurora A inhibition. These results reveal a new control mechanism of microtubule nucleation by Aurora A during assembly of the central spindle.


Asunto(s)
Aurora Quinasa A/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Anafase/fisiología , Aurora Quinasa A/antagonistas & inhibidores , Línea Celular Tumoral , Citocinesis/fisiología , Células HeLa , Humanos , Proteínas de Neoplasias/metabolismo , Fosforilación , Serina/metabolismo , Tubulina (Proteína)/metabolismo
4.
J Cell Sci ; 131(3)2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29246943

RESUMEN

Epithelia are layers of polarised cells tightly bound to each other by adhesive contacts. Epithelia act as barriers between an organism and its external environment. Understanding how epithelia maintain their essential integrity while remaining sufficiently plastic to allow events such as cytokinesis to take place is a key biological problem. In vertebrates, the remodelling and reinforcement of adherens junctions maintains epithelial integrity during cytokinesis. The involvement of tight junctions in cell division, however, has remained unexplored. Here, we examine the role of tight junctions during cytokinesis in the epithelium of the Xenopus laevis embryo. Depletion of the tight junction-associated proteins ZO-1 and GEF-H1 leads to altered cytokinesis duration and contractile ring geometry. Using a tension biosensor, we show that cytokinesis defects originate from misregulation of tensile forces applied to adherens junctions. Our results reveal that tight junctions regulate mechanical tension applied to adherens junctions, which in turn impacts cytokinesis.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Uniones Adherentes/metabolismo , Epitelio/metabolismo , Uniones Estrechas/metabolismo , Xenopus laevis/metabolismo , Animales , Fenómenos Biomecánicos , Citocinesis , Transporte de Proteínas , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Resistencia a la Tracción , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Xenopus/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , alfa Catenina/metabolismo
5.
J Cell Sci ; 131(7)2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29555820

RESUMEN

During the prometaphase stage of mitosis, the cell builds a bipolar spindle of microtubules that mechanically segregates sister chromatids between two daughter cells in anaphase. The spindle assembly checkpoint (SAC) is a quality control mechanism that monitors proper attachment of microtubules to chromosome kinetochores during prometaphase. Segregation occurs only when each chromosome is bi-oriented with each kinetochore pair attached to microtubules emanating from opposite spindle poles. Overexpression of the protein kinase Aurora A is a feature of various cancers and is thought to enable tumour cells to bypass the SAC, leading to aneuploidy. Here, we took advantage of a chemical and chemical-genetic approach to specifically inhibit Aurora A kinase activity in late prometaphase. We observed that a loss of Aurora A activity directly affects SAC function, that Aurora A is essential for maintaining the checkpoint protein Mad2 on unattached kinetochores and that inhibition of Aurora A leads to loss of the SAC, even in the presence of nocodazole or Taxol. This is a new finding that should affect the way Aurora A inhibitors are used in cancer treatments.This article has an associated First Person interview with the first authors of the paper.


Asunto(s)
Aurora Quinasa A/genética , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas Mad2/genética , Prometafase/genética , Anafase/genética , Aurora Quinasa A/antagonistas & inhibidores , Azepinas/farmacología , Línea Celular Tumoral , Cromátides/genética , Segregación Cromosómica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Humanos , Cinetocoros/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Mitosis/efectos de los fármacos , Mitosis/genética , Nocodazol/farmacología , Paclitaxel/farmacología , Prometafase/efectos de los fármacos , Pirimidinas/farmacología , Huso Acromático/genética
6.
Dev Biol ; 440(2): 88-98, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29753017

RESUMEN

In metazoans, organisms arising from a fertilized egg, the embryo will develop through multiple series of cell divisions, both symmetric and asymmetric, leading to differentiation. Aurora A is a serine threonine kinase highly involved in such divisions. While intensively studied at the cell biology level, its function in the development of a whole organism has been neglected. Here we investigated the pleiotropic effect of Aurora A loss-of-function in Drosophila larval early development. We report that Aurora A is required for proper larval development timing control through direct and indirect means. In larval tissues, Aurora A is required for proper symmetric division rate and eventually development speed as we observed in central brain, wing disc and ring gland. Moreover, Aurora A inactivation induces a reduction of ecdysteroids levels and a pupariation delay as an indirect consequence of ring gland development deceleration. Finally, although central brain development is initially restricted, we confirmed that brain lobe size eventually increases due to additive phenotypes: delayed pupariation and over-proliferation of cells with an intermediate cell-identity between neuroblast and ganglion mother cell resulting from defective asymmetric neuroblast cell division.


Asunto(s)
Aurora Quinasa A/fisiología , Proteínas de Drosophila/fisiología , Drosophila/embriología , Larva/metabolismo , Animales , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , División Celular/fisiología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Pleiotropía Genética/genética , Larva/fisiología , Mutación con Pérdida de Función/genética , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Huso Acromático/metabolismo
7.
Exp Cell Res ; 371(1): 72-82, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30056063

RESUMEN

Animal cells divide by a process called cytokinesis which relies on the constriction of a contractile actomyosin ring leading to the production of two daughter cells. Cytokinesis is an intrinsic property of cells which occurs even for artificially isolated cells. During division, isolated cells undergo dramatic changes in shape such as rounding and membrane deformation as the division furrow ingresses. However, cells are often embedded in tissues and thus are surrounded by neighbouring cells. How these neighbours might influence, or might themselves be influenced by, the shape changes of cytokinesis is poorly understood in vertebrates. Here, we show that during cytokinesis of epithelial cells in the Xenopus embryo, lateral cell-cell contacts remain almost perpendicular to the epithelial plane. Depletion of the tight junction-associated protein GEF-H1 leads to a transient and stereotyped deformation of cell-cell contacts. Although, this deformation occurs only during cytokinesis, we show that it originates from immediate neighbours of the dividing cell. Moreover, we show that exocyst and recycling endosome regulation by GEF-H1 are involved in adaptation of cell-cell contacts to deformation. Our results highlight the crucial role of tight junctions and GEF-H1 in cell-cell contact adaptation when cells are exposed to a mechanical stress such as cytokinesis.


Asunto(s)
Citocinesis/genética , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mecanotransducción Celular , Factores de Intercambio de Guanina Nucleótido Rho/genética , Uniones Estrechas/metabolismo , Proteínas de Xenopus/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Uniones Adherentes/metabolismo , Uniones Adherentes/ultraestructura , Amidas/farmacología , Animales , Comunicación Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Forma de la Célula , Embrión no Mamífero , Células Epiteliales/ultraestructura , Morfolinos/genética , Morfolinos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Factores de Intercambio de Guanina Nucleótido Rho/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido Rho/deficiencia , Uniones Estrechas/ultraestructura , Proteínas de Xenopus/antagonistas & inhibidores , Proteínas de Xenopus/deficiencia , Xenopus laevis , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
8.
Nature ; 489(7415): 313-7, 2012 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-22885700

RESUMEN

Cornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (~5%) and SMC3 (<1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin, and in yeast, the class I histone deacetylase Hos1 deacetylates SMC3 during anaphase. Here we identify HDAC8 as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the 'used' cohesin complex released from chromatin in both prophase and anaphase. SMC3 with retained acetylation is loaded onto chromatin, and chromatin immunoprecipitation sequencing analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/metabolismo , Histona Desacetilasas/genética , Mutación/genética , Proteínas Represoras/genética , Acetilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Anafase , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteoglicanos Tipo Condroitín Sulfato/química , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/química , Cristalografía por Rayos X , Proteínas de Unión al ADN , Femenino , Fibroblastos , Células HeLa , Histona Desacetilasas/química , Histona Desacetilasas/deficiencia , Histona Desacetilasas/metabolismo , Humanos , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Profase , Conformación Proteica , Proteínas/genética , Proteínas Represoras/química , Proteínas Represoras/deficiencia , Proteínas Represoras/metabolismo , Transcripción Genética , Cohesinas
9.
EMBO Rep ; 16(4): 481-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25712672

RESUMEN

Cytokinesis requires the formation of an actomyosin contractile ring between the two sets of sister chromatids. Annexin A2 is a calcium- and phospholipid-binding protein implicated in cortical actin remodeling. We report that annexin A2 accumulates at the equatorial cortex at the onset of cytokinesis and depletion of annexin A2 results in cytokinetic failure, due to a defective cleavage furrow assembly. In the absence of annexin A2, the small GTPase RhoA-which regulates cortical cytoskeletal rearrangement-fails to form a compact ring at the equatorial plane. Furthermore, annexin A2 is required for cortical localization of the RhoGEF Ect2 and to maintain the association between the equatorial cortex and the central spindle. Our results demonstrate that annexin A2 is necessary in the early phase of cytokinesis. We propose that annexin A2 participates in central spindle-equatorial plasma membrane communication.


Asunto(s)
Anexina A2/genética , Citocinesis/genética , Osteoblastos/metabolismo , Huso Acromático/metabolismo , Anexina A2/antagonistas & inhibidores , Anexina A2/metabolismo , Sitios de Unión , Línea Celular Tumoral , Cromátides/metabolismo , Cromátides/ultraestructura , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Osteoblastos/ultraestructura , Mutación Puntual , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo , Transducción de Señal , Huso Acromático/ultraestructura , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Proteína Fluorescente Roja
10.
EMBO Rep ; 15(9): 948-55, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25092791

RESUMEN

Sister chromatid cohesion, which depends on cohesin, is essential for the faithful segregation of replicated chromosomes. Here, we report that splicing complex Prp19 is essential for cohesion in both G2 and mitosis, and consequently for the proper progression of the cell through mitosis. Inactivation of splicing factors SF3a120 and U2AF65 induces similar cohesion defects to Prp19 complex inactivation. Our data indicate that these splicing factors are all required for the accumulation of cohesion factor Sororin, by facilitating the proper splicing of its pre-mRNA. Finally, we show that ectopic expression of Sororin corrects defective cohesion caused by Prp19 complex inactivation. We propose that the Prp19 complex and the splicing machinery contribute to the establishment of cohesion by promoting Sororin accumulation during S phase, and are, therefore, essential to the maintenance of genome stability.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/genética , Enzimas Reparadoras del ADN/genética , Proteínas Nucleares/genética , Precursores del ARN/genética , Empalme del ARN/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Segregación Cromosómica/genética , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Enzimas Reparadoras del ADN/biosíntesis , Regulación de la Expresión Génica , Inestabilidad Genómica , Células HeLa , Humanos , Mitosis/genética , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/biosíntesis , Factores de Empalme de ARN , Ribonucleoproteína Nuclear Pequeña U2/antagonistas & inhibidores , Ribonucleoproteínas/antagonistas & inhibidores , Factor de Empalme U2AF
11.
Dev Biol ; 396(1): 67-80, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25264619

RESUMEN

CDC6 is essential for S-phase to initiate DNA replication. It also regulates M-phase exit by inhibiting the activity of the major M-phase protein kinase CDK1. Here we show that addition of recombinant CDC6 to Xenopus embryo cycling extract delays the M-phase entry and inhibits CDK1 during the whole M-phase. Down regulation of endogenous CDC6 accelerates the M-phase entry, abolishes the initial slow and progressive phase of histone H1 kinase activation and increases the level of CDK1 activity during the M-phase. All these effects are fully rescued by the addition of recombinant CDC6 to the extracts. Diminution of CDC6 level in mouse zygotes by two different methods results in accelerated entry into the first cell division showing physiological relevance of CDC6 in intact cells. Thus, CDC6 behaves as CDK1 inhibitor regulating not only the M-phase exit, but also the M-phase entry and progression via limiting the level of CDK1 activity. We propose a novel mechanism of M-phase entry controlled by CDC6 and counterbalancing cyclin B-mediated CDK1 activation. Thus, CDK1 activation proceeds with concomitant inhibition by CDC6, which tunes the timing of the M-phase entry during the embryonic cell cycle.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , División Celular , Proteínas Cromosómicas no Histona/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Ciclo Celular/genética , Sistema Libre de Células , Ciclina B/fisiología , Replicación del ADN , Activación Enzimática , Femenino , Glutatión Transferasa/metabolismo , Ratones , Mitosis , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Recombinantes/metabolismo , Factores de Tiempo , Xenopus laevis
13.
J Cell Sci ; 125(Pt 12): 2844-52, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22454512

RESUMEN

MNK1 is a serine/threonine kinase identified as a target for MAP kinase pathways. Using chemical drug, kinase-dead expression or knockdown by RNA interference, we show that inhibition of MNK1 induces the formation of multinucleated cells, which can be rescued by expressing a form of MNK1 that is resistant to RNA interference. We found that the active human form of MNK1 localises to centrosomes, spindle microtubules and the midbody. Time-lapse recording of MNK1-depleted cells displays cytokinesis defects, as daughter cells fuse back together. When MNK1 activity was inhibited, no microtubule defect at the midbody was detected, however, anchorage of the membrane vesicle at the midbody was impaired as lumenal GFP-positive vesicles did not accumulate at the midbody. At the molecular level, we found that centriolin localisation was impaired at the midbody in MNK1-depleted cells. As a consequence, endobrevin - a v-SNARE protein implicated in the abscission step - was not properly localised to the midbody. Altogether, our data show that MNK1 activity is required for abscission.


Asunto(s)
Células/citología , Células/enzimología , Citocinesis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Centrosoma/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Microtúbulos/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/genética
14.
Biochem Biophys Res Commun ; 422(4): 770-5, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22627133

RESUMEN

Cyclins B1 and B2 are subtypes of cyclin B, a regulatory subunit of a maturation/M-phase promoting factor, and they are also highly conserved in many vertebrate species. Cyclin B1 is essential for mitosis, whereas cyclin B2 is regarded as dispensable. However, the overexpression of the cyclin B2 N-terminus containing the cytoplasmic retention signal, but not cyclin B1, inhibits bipolar spindle formation in Xenopus oocytes and embryos. Here we show that endogenous cyclin B2 was localized in and around the germinal vesicle. The perinuclear localization of cyclin B2 was perturbed by the overexpression of its N-terminus containing the cytoplasmic retention signal, which resulted in a spindle defect. This spindle defect was rescued by the overexpression of bipolar kinesin Eg5, which is located at the perinuclear region in the proximity of endogenous cyclin B2. These results demonstrate that the proper localization of cyclin B2 is essential for bipolar spindle formation in Xenopus oocytes.


Asunto(s)
Blastodisco/metabolismo , Ciclina B2/metabolismo , Oocitos/crecimiento & desarrollo , Huso Acromático/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Femenino , Meiosis , Oocitos/citología , Oocitos/metabolismo , Xenopus laevis/metabolismo
15.
Cells ; 11(4)2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35203358

RESUMEN

All living organisms on Earth are made up of cells, which are the functional unit of life. Eukaryotic organisms can consist of a single cell (unicellular) or a group of either identical or different cells (multicellular). Biologists have always been fascinated by how a single cell, such as an egg, can give rise to an entire organism, such as the human body, composed of billions of cells, including hundreds of different cell types. This is made possible by cell division, whereby a single cell divides to form two cells. During a symmetric cell division, a mother cell produces two daughter cells, while an asymmetric cell division results in a mother and a daughter cell that have different fates (different morphologies, cellular compositions, replicative potentials, and/or capacities to differentiate). In biology, the cell cycle refers to the sequence of events that a cell must go through in order to divide. These events, which always occur in the same order, define the different stages of the cell cycle: G1, S, G2, and M. What is fascinating about the cell cycle is its universality, and the main reason for this is that the genetic information of the cell is encoded by exactly the same molecular entity with exactly the same structure: the DNA double helix. Since both daughter cells always inherit their genetic information from their parent cell, the underlying fundamentals of the cell cycle-DNA replication and chromosome segregation-are shared by all organisms. This review goes back in time to provide a historical summary of the main discoveries that led to the current understanding of how cells divide and how cell division is regulated to remain highly reproducible.


Asunto(s)
Replicación del ADN , Ciclo Celular/fisiología , Puntos de Control del Ciclo Celular , División Celular , Humanos
16.
Cells ; 11(15)2022 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-35954289

RESUMEN

During its division the cell must ensure the equal distribution of its genetic material in the two newly created cells, but it must also distribute organelles such as the Golgi apparatus, the mitochondria and the centrosome. DNA, the carrier of heredity, located in the nucleus of the cell, has made it possible to define the main principles that regulate the progression of the cell cycle. The cell cycle, which includes interphase and mitosis, is essentially a nuclear cycle, or a DNA cycle, since the interphase stages names (G1, S, G2) phases are based on processes that occur exclusively with DNA. However, centrosome duplication and segregation are two equally important events for the two new cells that must inherit a single centrosome. The centrosome, long considered the center of the cell, is made up of two small cylinders, the centrioles, made up of microtubules modified to acquire a very high stability. It is the main nucleation center of microtubules in the cell. Apart from a few exceptions, each cell in G1 phase has only one centrosome, consisting in of two centrioles and pericentriolar materials (PCM), which must be duplicated before the cell divides so that the two new cells formed inherit a single centrosome. The centriole is also the origin of the primary cilia, motile cilia and flagella of some cells.


Asunto(s)
Centriolos , Centrosoma , Ciclo Celular , Centriolos/metabolismo , Centrosoma/metabolismo , Interfase , Mitosis
17.
Curr Biol ; 18(7): 519-25, 2008 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-18372177

RESUMEN

Targeting protein for Xklp2 (TPX2) activates the Ser/Thr kinase Aurora A in mitosis and targets it to the mitotic spindle [1, 2]. These effects on Aurora A are mediated by the N-terminal domain of TPX2, whereas a C-terminal fragment has been reported to affect microtubule nucleation [3]. Using the Xenopus system, we identified a novel role of TPX2 during mitosis. Injection of TPX2 or its C terminus (TPX2-CT) into blastomeres of two-cell embryos led to potent cleavage arrest. Despite cleavage arrest, TPX2-injected embryos biochemically undergo multiple rounds of DNA synthesis and mitosis, and arrested blastomeres have abnormal spindles, clustered centrosomes, and an apparent failure of cytokinesis. In Xenopus S3 cells, transfection of TPX2-FL causes spindle collapse, whereas TPX2-CT blocks pole segregation, resulting in apposing spindle poles with no evident displacement of Aurora A. Analysis of TPX2-CT deletion peptides revealed that only constructs able to interact with the class 5 kinesin-like motor protein Eg5 induce the spindle phenotypes. Importantly, injection of Eg5 into TPX2-CT-arrested blastomeres causes resumption of cleavage. These results define a discrete domain within the C terminus of TPX2 that exerts a novel Eg5-dependent function in spindle pole segregation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Desarrollo Embrionario/fisiología , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/fisiología , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Huso Acromático/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Línea Celular , Embrión no Mamífero/metabolismo , Embrión no Mamífero/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Huso Acromático/fisiología , Xenopus
18.
Biochem Biophys Res Commun ; 408(4): 647-53, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21531210

RESUMEN

Aurora-C, a member of the Aurora kinase family, is implicated in the regulation of mitosis. In contrast to Aurora-A and Aurora-B its cellular localization and functions are poorly characterized. TACC1 protein belongs to the transforming acidic coiled-coil family shown to interact with the Aurora kinases. In the present study we analyzed the interaction between Aurora-C and TACC1 by means of immunofluorescence (IF), co-immunoprecipitation (IP) and in vitro phosphorylation experiments. We demonstrated that Aurora-C and TACC1 proteins co-localize to the midbody of HeLa cells during cytokinesis. Immunoprecipitated TACC1 from HeLa cell extracts was associated with Aurora-C. In addition, the interaction of the two proteins was tested by analyzing the phosphorylation of TACC1 in vitro. The results demonstrated that TACC1 is phosphorylated by Aurora-C on a serine at position 228. In conclusion, the study demonstrated that TACC1 localizes at the midbody during cytokinesis and interacts with and is a substrate of Aurora-C, which warrant further investigation in order to elucidate the functional significance of this interaction.


Asunto(s)
Citocinesis , Proteínas Fetales/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Aurora Quinasa B , Aurora Quinasa C , Aurora Quinasas , Proteínas Fetales/genética , Células HeLa , Humanos , Inmunoprecipitación , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Serina/genética , Serina/metabolismo
19.
Nat Cell Biol ; 5(3): 242-8, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12577065

RESUMEN

The activated form of Ran (Ran-GTP) stimulates spindle assembly in Xenopus laevis egg extracts, presumably by releasing spindle assembly factors, such as TPX2 (target protein for Xenopus kinesin-like protein 2) and NuMA (nuclear-mitotic apparatus protein) from the inhibitory binding of importin-alpha and -beta. We report here that Ran-GTP stimulates the interaction between TPX2 and the Xenopus Aurora A kinase, Eg2. This interaction causes TPX2 to stimulate both the phosphorylation and the kinase activity of Eg2 in a microtubule-dependent manner. We show that TPX2 and microtubules promote phosphorylation of Eg2 by preventing phosphatase I (PPI)-induced dephosphorylation. Activation of Eg2 by TPX2 and microtubules is inhibited by importin-alpha and -beta, although this inhibition is overcome by Ran-GTP both in the egg extracts and in vitro with purified proteins. As the phosphorylation of Eg2 stimulated by the Ran-GTP-TPX2 pathway is essential for spindle assembly, we hypothesize that the Ran-GTP gradient established by the condensed chromosomes is translated into the Aurora A kinase gradient on the microtubules to regulate spindle assembly and dynamics.


Asunto(s)
Proteínas Quinasas/metabolismo , Transducción de Señal , Huso Acromático/enzimología , Proteína de Unión al GTP ran/metabolismo , Animales , Aurora Quinasas , Proteínas de Ciclo Celular , Proteínas Quinasas/aislamiento & purificación , Proteínas Serina-Treonina Quinasas , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas de Xenopus , Xenopus laevis , Proteína de Unión al GTP ran/aislamiento & purificación
20.
J Vis Exp ; (171)2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-34057457

RESUMEN

Organoids are stem cell-derived three-dimensional structures that reproduce ex vivo the complex architecture and physiology of organs. Thus, organoids represent useful models to study the mechanisms that control stem cell self-renewal and differentiation in mammals, including primary ciliogenesis and ciliary signaling. Primary ciliogenesis is the dynamic process of assembling the primary cilium, a key cell signaling center that controls stem cell self-renewal and/or differentiation in various tissues. Here we present a comprehensive protocol for the immunofluorescence staining of cell lineage and primary cilia markers, in whole-mount mouse mammary organoids, for light sheet microscopy. We describe the microscopy imaging method and an image processing technique for the quantitative analysis of primary cilium assembly and length in organoids. This protocol enables a precise analysis of primary cilia in complex three-dimensional structures at the single cell level. This method is applicable for immunofluorescence staining and imaging of primary cilia and ciliary signaling in mammary organoids derived from normal and genetically modified stem cells, from healthy and pathological tissues, to study the biology of the primary cilium in health and disease.


Asunto(s)
Imagenología Tridimensional , Organogénesis , Organoides , Animales , Diferenciación Celular/fisiología , Cilios , Ratones , Organoides/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA