Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 631(8019): 189-198, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38898278

RESUMEN

The COVID-19 pandemic is an ongoing global health threat, yet our understanding of the dynamics of early cellular responses to this disease remains limited1. Here in our SARS-CoV-2 human challenge study, we used single-cell multi-omics profiling of nasopharyngeal swabs and blood to temporally resolve abortive, transient and sustained infections in seronegative individuals challenged with pre-Alpha SARS-CoV-2. Our analyses revealed rapid changes in cell-type proportions and dozens of highly dynamic cellular response states in epithelial and immune cells associated with specific time points and infection status. We observed that the interferon response in blood preceded the nasopharyngeal response. Moreover, nasopharyngeal immune infiltration occurred early in samples from individuals with only transient infection and later in samples from individuals with sustained infection. High expression of HLA-DQA2 before inoculation was associated with preventing sustained infection. Ciliated cells showed multiple immune responses and were most permissive for viral replication, whereas nasopharyngeal T cells and macrophages were infected non-productively. We resolved 54 T cell states, including acutely activated T cells that clonally expanded while carrying convergent SARS-CoV-2 motifs. Our new computational pipeline Cell2TCR identifies activated antigen-responding T cells based on a gene expression signature and clusters these into clonotype groups and motifs. Overall, our detailed time series data can serve as a Rosetta stone for epithelial and immune cell responses and reveals early dynamic responses associated with protection against infection.


Asunto(s)
COVID-19 , Nasofaringe , SARS-CoV-2 , Análisis de la Célula Individual , Linfocitos T , Humanos , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Nasofaringe/virología , Nasofaringe/inmunología , Linfocitos T/inmunología , Linfocitos T/virología , Interferones/inmunología , Interferones/metabolismo , Masculino , Femenino , Macrófagos/inmunología , Macrófagos/virología , Replicación Viral , Células Epiteliales/virología , Células Epiteliales/inmunología , Factores de Tiempo , Adulto
2.
Nature ; 616(7955): 143-151, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36991123

RESUMEN

The relationship between the human placenta-the extraembryonic organ made by the fetus, and the decidua-the mucosal layer of the uterus, is essential to nurture and protect the fetus during pregnancy. Extravillous trophoblast cells (EVTs) derived from placental villi infiltrate the decidua, transforming the maternal arteries into high-conductance vessels1. Defects in trophoblast invasion and arterial transformation established during early pregnancy underlie common pregnancy disorders such as pre-eclampsia2. Here we have generated a spatially resolved multiomics single-cell atlas of the entire human maternal-fetal interface including the myometrium, which enables us to resolve the full trajectory of trophoblast differentiation. We have used this cellular map to infer the possible transcription factors mediating EVT invasion and show that they are preserved in in vitro models of EVT differentiation from primary trophoblast organoids3,4 and trophoblast stem cells5. We define the transcriptomes of the final cell states of trophoblast invasion: placental bed giant cells (fused multinucleated EVTs) and endovascular EVTs (which form plugs inside the maternal arteries). We predict the cell-cell communication events contributing to trophoblast invasion and placental bed giant cell formation, and model the dual role of interstitial EVTs and endovascular EVTs in mediating arterial transformation during early pregnancy. Together, our data provide a comprehensive analysis of postimplantation trophoblast differentiation that can be used to inform the design of experimental models of the human placenta in early pregnancy.


Asunto(s)
Multiómica , Primer Trimestre del Embarazo , Trofoblastos , Femenino , Humanos , Embarazo , Movimiento Celular , Placenta/irrigación sanguínea , Placenta/citología , Placenta/fisiología , Primer Trimestre del Embarazo/fisiología , Trofoblastos/citología , Trofoblastos/metabolismo , Trofoblastos/fisiología , Decidua/irrigación sanguínea , Decidua/citología , Relaciones Materno-Fetales/fisiología , Análisis de la Célula Individual , Miometrio/citología , Miometrio/fisiología , Diferenciación Celular , Organoides/citología , Organoides/fisiología , Células Madre/citología , Transcriptoma , Factores de Transcripción/metabolismo , Comunicación Celular
3.
Nature ; 605(7910): 503-508, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35545669

RESUMEN

Mutations in the germline generates all evolutionary genetic variation and is a cause of genetic disease. Parental age is the primary determinant of the number of new germline mutations in an individual's genome1,2. Here we analysed the genome-wide sequences of 21,879 families with rare genetic diseases and identified 12 individuals with a hypermutated genome with between two and seven times more de novo single-nucleotide variants than expected. In most families (9 out of 12), the excess mutations came from the father. Two families had genetic drivers of germline hypermutation, with fathers carrying damaging genetic variation in DNA-repair genes. For five of the families, paternal exposure to chemotherapeutic agents before conception was probably a key driver of hypermutation. Our results suggest that the germline is well protected from mutagenic effects, hypermutation is rare, the number of excess mutations is relatively modest and most individuals with a hypermutated genome will not have a genetic disease.


Asunto(s)
Enfermedades Genéticas Congénitas , Células Germinativas , Mutación de Línea Germinal , Factores de Edad , Enfermedades Genéticas Congénitas/genética , Mutación de Línea Germinal/genética , Humanos , Masculino , Mutagénesis/genética , Mutación , Padres , Polimorfismo de Nucleótido Simple
4.
Nature ; 607(7919): 540-547, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794482

RESUMEN

Gonadal development is a complex process that involves sex determination followed by divergent maturation into either testes or ovaries1. Historically, limited tissue accessibility, a lack of reliable in vitro models and critical differences between humans and mice have hampered our knowledge of human gonadogenesis, despite its importance in gonadal conditions and infertility. Here, we generated a comprehensive map of first- and second-trimester human gonads using a combination of single-cell and spatial transcriptomics, chromatin accessibility assays and fluorescent microscopy. We extracted human-specific regulatory programmes that control the development of germline and somatic cell lineages by profiling equivalent developmental stages in mice. In both species, we define the somatic cell states present at the time of sex specification, including the bipotent early supporting population that, in males, upregulates the testis-determining factor SRY and sPAX8s, a gonadal lineage located at the gonadal-mesonephric interface. In females, we resolve the cellular and molecular events that give rise to the first and second waves of granulosa cells that compartmentalize the developing ovary to modulate germ cell differentiation. In males, we identify human SIGLEC15+ and TREM2+ fetal testicular macrophages, which signal to somatic cells outside and inside the developing testis cords, respectively. This study provides a comprehensive spatiotemporal map of human and mouse gonadal differentiation, which can guide in vitro gonadogenesis.


Asunto(s)
Linaje de la Célula , Células Germinativas , Ovario , Diferenciación Sexual , Análisis de la Célula Individual , Testículo , Animales , Cromatina/genética , Cromatina/metabolismo , Femenino , Células Germinativas/citología , Células Germinativas/metabolismo , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Humanos , Inmunoglobulinas , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana , Proteínas de la Membrana , Ratones , Microscopía Fluorescente , Ovario/citología , Ovario/embriología , Factor de Transcripción PAX8 , Embarazo , Primer Trimestre del Embarazo , Segundo Trimestre del Embarazo , Receptores Inmunológicos , Diferenciación Sexual/genética , Testículo/citología , Testículo/embriología , Transcriptoma
5.
Nature ; 602(7896): 321-327, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34937051

RESUMEN

It is not fully understood why COVID-19 is typically milder in children1-3. Here, to examine the differences between children and adults in their response to SARS-CoV-2 infection, we analysed paediatric and adult patients with COVID-19 as well as healthy control individuals (total n = 93) using single-cell multi-omic profiling of matched nasal, tracheal, bronchial and blood samples. In the airways of healthy paediatric individuals, we observed cells that were already in an interferon-activated state, which after SARS-CoV-2 infection was further induced especially in airway immune cells. We postulate that higher paediatric innate interferon responses restrict viral replication and disease progression. The systemic response in children was characterized by increases in naive lymphocytes and a depletion of natural killer cells, whereas, in adults, cytotoxic T cells and interferon-stimulated subpopulations were significantly increased. We provide evidence that dendritic cells initiate interferon signalling in early infection, and identify epithelial cell states associated with COVID-19 and age. Our matching nasal and blood data show a strong interferon response in the airways with the induction of systemic interferon-stimulated populations, which were substantially reduced in paediatric patients. Together, we provide several mechanisms that explain the milder clinical syndrome observed in children.


Asunto(s)
COVID-19/sangre , COVID-19/inmunología , Células Dendríticas/inmunología , Interferones/inmunología , Células Asesinas Naturales/inmunología , SARS-CoV-2/inmunología , Linfocitos T Citotóxicos/inmunología , Adulto , Bronquios/inmunología , Bronquios/virología , COVID-19/patología , Chicago , Estudios de Cohortes , Progresión de la Enfermedad , Células Epiteliales/citología , Células Epiteliales/inmunología , Células Epiteliales/virología , Femenino , Humanos , Inmunidad Innata , Londres , Masculino , Mucosa Nasal/inmunología , Mucosa Nasal/virología , SARS-CoV-2/crecimiento & desarrollo , Análisis de la Célula Individual , Tráquea/virología , Adulto Joven
6.
Nature ; 598(7880): 327-331, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34588693

RESUMEN

Haematopoiesis in the bone marrow (BM) maintains blood and immune cell production throughout postnatal life. Haematopoiesis first emerges in human BM at 11-12 weeks after conception1,2, yet almost nothing is known about how fetal BM (FBM) evolves to meet the highly specialized needs of the fetus and newborn. Here we detail the development of FBM, including stroma, using multi-omic assessment of mRNA and multiplexed protein epitope expression. We find that the full blood and immune cell repertoire is established in FBM in a short time window of 6-7 weeks early in the second trimester. FBM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell subsets emerging for the first time. The substantial expansion of B lymphocytes in FBM contrasts with fetal liver at the same gestational age. Haematopoietic progenitors from fetal liver, FBM and cord blood exhibit transcriptional and functional differences that contribute to tissue-specific identity and cellular diversification. Endothelial cell types form distinct vascular structures that we show are regionally compartmentalized within FBM. Finally, we reveal selective disruption of B lymphocyte, erythroid and myeloid development owing to a cell-intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in Down syndrome (trisomy 21).


Asunto(s)
Células de la Médula Ósea/citología , Médula Ósea , Síndrome de Down/sangre , Síndrome de Down/inmunología , Feto/citología , Hematopoyesis , Sistema Inmunológico/citología , Linfocitos B/citología , Células Dendríticas/citología , Síndrome de Down/metabolismo , Síndrome de Down/patología , Células Endoteliales/patología , Eosinófilos/citología , Células Eritroides/citología , Granulocitos/citología , Humanos , Inmunidad , Células Mieloides/citología , Células del Estroma/citología
7.
Eur J Immunol ; 54(1): e2350633, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37799110

RESUMEN

In COVID-19, hyperinflammatory and dysregulated immune responses contribute to severity. Patients with pre-existing autoimmune conditions can therefore be at increased risk of severe COVID-19 and/or associated sequelae, yet SARS-CoV-2 infection in this group has been little studied. Here, we performed single-cell analysis of peripheral blood mononuclear cells from patients with three major autoimmune diseases (rheumatoid arthritis, psoriasis, or multiple sclerosis) during SARS-CoV-2 infection. We observed compositional differences between the autoimmune disease groups coupled with altered patterns of gene expression, transcription factor activity, and cell-cell communication that substantially shape the immune response under SARS-CoV-2 infection. While enrichment of HLA-DRlow CD14+ monocytes was observed in all three autoimmune disease groups, type-I interferon signaling as well as inflammatory T cell and monocyte responses varied widely between the three groups of patients. Our results reveal disturbed immune responses to SARS-CoV-2 in patients with pre-existing autoimmunity, highlighting important considerations for disease treatment and follow-up.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Humanos , SARS-CoV-2 , Leucocitos Mononucleares , Multiómica , Autoinmunidad , Análisis de la Célula Individual
8.
Am J Hum Genet ; 108(11): 2186-2194, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34626536

RESUMEN

Structural variation (SV) describes a broad class of genetic variation greater than 50 bp in size. SVs can cause a wide range of genetic diseases and are prevalent in rare developmental disorders (DDs). Individuals presenting with DDs are often referred for diagnostic testing with chromosomal microarrays (CMAs) to identify large copy-number variants (CNVs) and/or with single-gene, gene-panel, or exome sequencing (ES) to identify single-nucleotide variants, small insertions/deletions, and CNVs. However, individuals with pathogenic SVs undetectable by conventional analysis often remain undiagnosed. Consequently, we have developed the tool InDelible, which interrogates short-read sequencing data for split-read clusters characteristic of SV breakpoints. We applied InDelible to 13,438 probands with severe DDs recruited as part of the Deciphering Developmental Disorders (DDD) study and discovered 63 rare, damaging variants in genes previously associated with DDs missed by standard SNV, indel, or CNV discovery approaches. Clinical review of these 63 variants determined that about half (30/63) were plausibly pathogenic. InDelible was particularly effective at ascertaining variants between 21 and 500 bp in size and increased the total number of potentially pathogenic variants identified by DDD in this size range by 42.9%. Of particular interest were seven confirmed de novo variants in MECP2, which represent 35.0% of all de novo protein-truncating variants in MECP2 among DDD study participants. InDelible provides a framework for the discovery of pathogenic SVs that are most likely missed by standard analytical workflows and has the potential to improve the diagnostic yield of ES across a broad range of genetic diseases.


Asunto(s)
Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Secuenciación del Exoma/métodos , Niño , Femenino , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/genética
9.
Genome Res ; 29(7): 1047-1056, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31227601

RESUMEN

Approximately 2% of de novo single-nucleotide variants (SNVs) appear as part of clustered mutations that create multinucleotide variants (MNVs). MNVs are an important source of genomic variability as they are more likely to alter an encoded protein than a SNV, which has important implications in disease as well as evolution. Previous studies of MNVs have focused on their mutational origins and have not systematically evaluated their functional impact and contribution to disease. We identified 69,940 MNVs and 91 de novo MNVs in 6688 exome-sequenced parent-offspring trios from the Deciphering Developmental Disorders Study comprising families with severe developmental disorders. We replicated the previously described MNV mutational signatures associated with DNA polymerase zeta, an error-prone translesion polymerase, and the APOBEC family of DNA deaminases. We estimate the simultaneous MNV germline mutation rate to be 1.78 × 10-10 mutations per base pair per generation. We found that most MNVs within a single codon create a missense change that could not have been created by a SNV. MNV-induced missense changes were, on average, more physicochemically divergent, were more depleted in highly constrained genes (pLI ≥ 0.9), and were under stronger purifying selection compared with SNV-induced missense changes. We found that de novo MNVs were significantly enriched in genes previously associated with developmental disorders in affected children. This shows that MNVs can be more damaging than SNVs even when both induce missense changes, and are an important variant type to consider in relation to human disease.


Asunto(s)
Discapacidades del Desarrollo/genética , Exoma , Mutación , Niño , Análisis Mutacional de ADN , Humanos , Tasa de Mutación , Mutación Missense , Nucleótidos , Polimorfismo de Nucleótido Simple
10.
Lancet ; 393(10173): 747-757, 2019 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-30712880

RESUMEN

BACKGROUND: Fetal structural anomalies, which are detected by ultrasonography, have a range of genetic causes, including chromosomal aneuploidy, copy number variations (CNVs; which are detectable by chromosomal microarrays), and pathogenic sequence variants in developmental genes. Testing for aneuploidy and CNVs is routine during the investigation of fetal structural anomalies, but there is little information on the clinical usefulness of genome-wide next-generation sequencing in the prenatal setting. We therefore aimed to evaluate the proportion of fetuses with structural abnormalities that had identifiable variants in genes associated with developmental disorders when assessed with whole-exome sequencing (WES). METHODS: In this prospective cohort study, two groups in Birmingham and London recruited patients from 34 fetal medicine units in England and Scotland. We used whole-exome sequencing (WES) to evaluate the presence of genetic variants in developmental disorder genes (diagnostic genetic variants) in a cohort of fetuses with structural anomalies and samples from their parents, after exclusion of aneuploidy and large CNVs. Women were eligible for inclusion if they were undergoing invasive testing for identified nuchal translucency or structural anomalies in their fetus, as detected by ultrasound after 11 weeks of gestation. The partners of these women also had to consent to participate. Sequencing results were interpreted with a targeted virtual gene panel for developmental disorders that comprised 1628 genes. Genetic results related to fetal structural anomaly phenotypes were then validated and reported postnatally. The primary endpoint, which was assessed in all fetuses, was the detection of diagnostic genetic variants considered to have caused the fetal developmental anomaly. FINDINGS: The cohort was recruited between Oct 22, 2014, and June 29, 2017, and clinical data were collected until March 31, 2018. After exclusion of fetuses with aneuploidy and CNVs, 610 fetuses with structural anomalies and 1202 matched parental samples (analysed as 596 fetus-parental trios, including two sets of twins, and 14 fetus-parent dyads) were analysed by WES. After bioinformatic filtering and prioritisation according to allele frequency and effect on protein and inheritance pattern, 321 genetic variants (representing 255 potential diagnoses) were selected as potentially pathogenic genetic variants (diagnostic genetic variants), and these variants were reviewed by a multidisciplinary clinical review panel. A diagnostic genetic variant was identified in 52 (8·5%; 95% CI 6·4-11·0) of 610 fetuses assessed and an additional 24 (3·9%) fetuses had a variant of uncertain significance that had potential clinical usefulness. Detection of diagnostic genetic variants enabled us to distinguish between syndromic and non-syndromic fetal anomalies (eg, congenital heart disease only vs a syndrome with congenital heart disease and learning disability). Diagnostic genetic variants were present in 22 (15·4%) of 143 fetuses with multisystem anomalies (ie, more than one fetal structural anomaly), nine (11·1%) of 81 fetuses with cardiac anomalies, and ten (15·4%) of 65 fetuses with skeletal anomalies; these phenotypes were most commonly associated with diagnostic variants. However, diagnostic genetic variants were least common in fetuses with isolated increased nuchal translucency (≥4·0 mm) in the first trimester (in three [3·2%] of 93 fetuses). INTERPRETATION: WES facilitates genetic diagnosis of fetal structural anomalies, which enables more accurate predictions of fetal prognosis and risk of recurrence in future pregnancies. However, the overall detection of diagnostic genetic variants in a prospectively ascertained cohort with a broad range of fetal structural anomalies is lower than that suggested by previous smaller-scale studies of fewer phenotypes. WES improved the identification of genetic disorders in fetuses with structural abnormalities; however, before clinical implementation, careful consideration should be given to case selection to maximise clinical usefulness. FUNDING: UK Department of Health and Social Care and The Wellcome Trust.


Asunto(s)
Cariotipo Anormal/estadística & datos numéricos , Anomalías Congénitas/genética , Secuenciación del Exoma/estadística & datos numéricos , Desarrollo Fetal/genética , Feto/anomalías , Cariotipo Anormal/embriología , Aborto Eugénico/estadística & datos numéricos , Aborto Espontáneo/epidemiología , Anomalías Congénitas/diagnóstico , Anomalías Congénitas/epidemiología , Variaciones en el Número de Copia de ADN/genética , Femenino , Feto/diagnóstico por imagen , Humanos , Recién Nacido , Nacimiento Vivo/epidemiología , Masculino , Medida de Translucencia Nucal , Padres , Muerte Perinatal/etiología , Embarazo , Estudios Prospectivos , Mortinato/epidemiología , Secuenciación del Exoma/métodos
11.
Genet Med ; 21(5): 1065-1073, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30293990

RESUMEN

PURPOSE: To determine the diagnostic yield of combined exome sequencing (ES) and autopsy in fetuses/neonates with prenatally identified structural anomalies resulting in termination of pregnancy, intrauterine, neonatal, or early infant death. METHODS: ES was undertaken in 27 proband/parent trios following full autopsy. Candidate pathogenic variants were classified by a multidisciplinary clinical review panel using American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS: A genetic diagnosis was established in ten cases (37%). Pathogenic/likely pathogenic variants were identified in nine different genes including four de novo autosomal dominant, three homozygous autosomal recessive, two compound heterozygous autosomal recessive, and one X-linked. KMT2D variants (associated with Kabuki syndrome postnatally) occurred in two cases. Pathogenic variants were identified in 5/13 (38%) cases with multisystem anomalies, in 2/4 (50%) cases with fetal akinesia deformation sequence, and in 1/4 (25%) cases each with cardiac and brain anomalies and hydrops fetalis. No pathogenic variants were detected in fetuses with genitourinary (1), skeletal (1), or abdominal (1) abnormalities. CONCLUSION: This cohort demonstrates the clinical utility of molecular autopsy with ES to identify an underlying genetic cause in structurally abnormal fetuses/neonates. These molecular findings provided parents with an explanation of the developmental abnormality, delineated the recurrence risks, and assisted the management of subsequent pregnancies.


Asunto(s)
Anomalías Congénitas/genética , Enfermedades Fetales/genética , Diagnóstico Prenatal/métodos , Autopsia/métodos , Estudios de Cohortes , Anomalías Congénitas/diagnóstico , Exoma/genética , Femenino , Enfermedades Fetales/diagnóstico , Feto/diagnóstico por imagen , Humanos , Recién Nacido , Masculino , Embarazo , Secuenciación del Exoma/métodos
12.
Genet Med ; 20(10): 1216-1223, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29323667

RESUMEN

PURPOSE: Given the rapid pace of discovery in rare disease genomics, it is likely that improvements in diagnostic yield can be made by systematically reanalyzing previously generated genomic sequence data in light of new knowledge. METHODS: We tested this hypothesis in the United Kingdom-wide Deciphering Developmental Disorders study, where in 2014 we reported a diagnostic yield of 27% through whole-exome sequencing of 1,133 children with severe developmental disorders and their parents. We reanalyzed existing data using improved variant calling methodologies, novel variant detection algorithms, updated variant annotation, evidence-based filtering strategies, and newly discovered disease-associated genes. RESULTS: We are now able to diagnose an additional 182 individuals, taking our overall diagnostic yield to 454/1,133 (40%), and another 43 (4%) have a finding of uncertain clinical significance. The majority of these new diagnoses are due to novel developmental disorder-associated genes discovered since our original publication. CONCLUSION: This study highlights the importance of coupling large-scale research with clinical practice, and of discussing the possibility of iterative reanalysis and recontact with patients and health professionals at an early stage. We estimate that implementing parent-offspring whole-exome sequencing as a first-line diagnostic test for developmental disorders would diagnose >50% of patients.


Asunto(s)
Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Secuenciación del Exoma/métodos , Genoma Humano/genética , Discapacidades del Desarrollo/patología , Exoma , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Genómica , Humanos , Masculino , Enfermedades Raras , Reino Unido
13.
Lancet ; 385(9975): 1305-14, 2015 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-25529582

RESUMEN

BACKGROUND: Human genome sequencing has transformed our understanding of genomic variation and its relevance to health and disease, and is now starting to enter clinical practice for the diagnosis of rare diseases. The question of whether and how some categories of genomic findings should be shared with individual research participants is currently a topic of international debate, and development of robust analytical workflows to identify and communicate clinically relevant variants is paramount. METHODS: The Deciphering Developmental Disorders (DDD) study has developed a UK-wide patient recruitment network involving over 180 clinicians across all 24 regional genetics services, and has performed genome-wide microarray and whole exome sequencing on children with undiagnosed developmental disorders and their parents. After data analysis, pertinent genomic variants were returned to individual research participants via their local clinical genetics team. FINDINGS: Around 80,000 genomic variants were identified from exome sequencing and microarray analysis in each individual, of which on average 400 were rare and predicted to be protein altering. By focusing only on de novo and segregating variants in known developmental disorder genes, we achieved a diagnostic yield of 27% among 1133 previously investigated yet undiagnosed children with developmental disorders, whilst minimising incidental findings. In families with developmentally normal parents, whole exome sequencing of the child and both parents resulted in a 10-fold reduction in the number of potential causal variants that needed clinical evaluation compared to sequencing only the child. Most diagnostic variants identified in known genes were novel and not present in current databases of known disease variation. INTERPRETATION: Implementation of a robust translational genomics workflow is achievable within a large-scale rare disease research study to allow feedback of potentially diagnostic findings to clinicians and research participants. Systematic recording of relevant clinical data, curation of a gene-phenotype knowledge base, and development of clinical decision support software are needed in addition to automated exclusion of almost all variants, which is crucial for scalable prioritisation and review of possible diagnostic variants. However, the resource requirements of development and maintenance of a clinical reporting system within a research setting are substantial. FUNDING: Health Innovation Challenge Fund, a parallel funding partnership between the Wellcome Trust and the UK Department of Health.


Asunto(s)
Discapacidades del Desarrollo/diagnóstico , Genoma Humano/genética , Adolescente , Niño , Preescolar , Discapacidades del Desarrollo/genética , Femenino , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Heterocigoto , Humanos , Hallazgos Incidentales , Lactante , Recién Nacido , Difusión de la Información , Masculino , Fenotipo , Manejo de Especímenes
14.
Nat Genet ; 38(9): 1032-7, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16906163

RESUMEN

Recently, the application of array-based comparative genomic hybridization (array CGH) has improved rates of detection of chromosomal imbalances in individuals with mental retardation and dysmorphic features. Here, we describe three individuals with learning disability and a heterozygous deletion at chromosome 17q21.3, detected in each case by array CGH. FISH analysis demonstrated that the deletions occurred as de novo events in each individual and were between 500 kb and 650 kb in size. A recently described 900-kb inversion that suppresses recombination between ancestral H1 and H2 haplotypes encompasses the deletion. We show that, in each trio, the parent of origin of the deleted chromosome 17 carries at least one H2 chromosome. This region of 17q21.3 shows complex genomic architecture with well-described low-copy repeats (LCRs). The orientation of LCRs flanking the deleted segment in inversion heterozygotes is likely to facilitate the generation of this microdeletion by means of non-allelic homologous recombination.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 17 , Discapacidades del Desarrollo/genética , Discapacidades para el Aprendizaje/genética , Proteínas tau/genética , Adolescente , Adulto , Preescolar , Inversión Cromosómica , Femenino , Marcadores Genéticos , Haplotipos , Heterocigoto , Humanos , Hibridación Fluorescente in Situ , Masculino , Hibridación de Ácido Nucleico , Mapeo Físico de Cromosoma , Polimorfismo de Nucleótido Simple , Secuencias Repetitivas de Ácidos Nucleicos
15.
Genome Med ; 16(1): 8, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195504

RESUMEN

BACKGROUND: As normal cells transform into cancers, their cell state changes, which may drive cancer cells into a stem-like or more primordial, foetal, or embryonic cell state. The transcriptomic profile of this final state may encode information about cancer's origin and how cancers relate to their normal cell counterparts. METHODS: Here, we used single-cell atlases to study cancer transformation in transcriptional terms. We utilised bulk transcriptomes across a wide spectrum of adult and childhood cancers, using a previously established method to interrogate their relationship to normal cell states. We extend and validate these findings using single-cell cancer transcriptomes and organ-specific atlases of colorectal and liver cancer. RESULTS: Our bulk transcriptomic data reveals that adult cancers rarely return to an embryonic state, but that a foetal state is a near-universal feature of childhood cancers. This finding was confirmed with single-cell cancer transcriptomes. CONCLUSIONS: Our findings provide a nuanced picture of transformation in human cancer, indicating cancer-specific rather than universal patterns of transformation pervade adult epithelial cancers.


Asunto(s)
Neoplasias Hepáticas , Adulto , Humanos , Neoplasias Hepáticas/genética , Desarrollo Embrionario , Feto , Perfilación de la Expresión Génica , Transcriptoma
16.
Sci Immunol ; 9(95): eade5705, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787962

RESUMEN

Inborn errors of T cell development present a pediatric emergency in which timely curative therapy is informed by molecular diagnosis. In 11 affected patients across four consanguineous kindreds, we detected homozygosity for a single deleterious missense variant in the gene NudC domain-containing 3 (NUDCD3). Two infants had severe combined immunodeficiency with the complete absence of T and B cells (T -B- SCID), whereas nine showed classical features of Omenn syndrome (OS). Restricted antigen receptor gene usage by residual T lymphocytes suggested impaired V(D)J recombination. Patient cells showed reduced expression of NUDCD3 protein and diminished ability to support RAG-mediated recombination in vitro, which was associated with pathologic sequestration of RAG1 in the nucleoli. Although impaired V(D)J recombination in a mouse model bearing the homologous variant led to milder immunologic abnormalities, NUDCD3 is absolutely required for healthy T and B cell development in humans.


Asunto(s)
Inmunodeficiencia Combinada Grave , Recombinación V(D)J , Humanos , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/inmunología , Animales , Ratones , Recombinación V(D)J/inmunología , Recombinación V(D)J/genética , Masculino , Femenino , Lactante , Linfocitos B/inmunología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Linfocitos T/inmunología , Preescolar , Mutación Missense
17.
Nat Aging ; 4(5): 727-744, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38622407

RESUMEN

Skeletal muscle aging is a key contributor to age-related frailty and sarcopenia with substantial implications for global health. Here we profiled 90,902 single cells and 92,259 single nuclei from 17 donors to map the aging process in the adult human intercostal muscle, identifying cellular changes in each muscle compartment. We found that distinct subsets of muscle stem cells exhibit decreased ribosome biogenesis genes and increased CCL2 expression, causing different aging phenotypes. Our atlas also highlights an expansion of nuclei associated with the neuromuscular junction, which may reflect re-innervation, and outlines how the loss of fast-twitch myofibers is mitigated through regeneration and upregulation of fast-type markers in slow-twitch myofibers with age. Furthermore, we document the function of aging muscle microenvironment in immune cell attraction. Overall, we present a comprehensive human skeletal muscle aging resource ( https://www.muscleageingcellatlas.org/ ) together with an in-house mouse muscle atlas to study common features of muscle aging across species.


Asunto(s)
Envejecimiento , Músculo Esquelético , Humanos , Envejecimiento/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Animales , Ratones , Adulto , Anciano , Sarcopenia/patología , Sarcopenia/metabolismo , Masculino , Unión Neuromuscular/metabolismo , Persona de Mediana Edad , Femenino
18.
Hum Mutat ; 34(12): 1650-61, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24000165

RESUMEN

Investigation of rare familial forms of renal cell carcinoma (RCC) has led to the identification of genes such as VHL and MET that are also implicated in the pathogenesis of sporadic RCC. In order to identify a novel candidate renal tumor suppressor gene, we characterized the breakpoints of a constitutional balanced translocation, t(5;19)(p15.3;q12), associated with familial RCC and found that a previously uncharacterized gene UBE2QL1 was disrupted by the chromosome 5 breakpoint. UBE2QL1 mRNA expression was downregulated in 78.6% of sporadic RCC and, although no intragenic mutations were detected, gene deletions and promoter region hypermethylation were detected in 17.3% and 20.3%, respectively, of sporadic RCC. Reexpression of UBE2QL1 in a deficient RCC cell line suppressed anchorage-independent growth. UBE2QL1 shows homology to the E2 class of ubiquitin conjugating enzymes and we found that (1) UBE2QL1 possesses an active-site cysteine (C88) that is monoubiquitinated in vivo, and (2) UBE2QL1 interacts with FBXW7 (an F box protein providing substrate recognition to the SCF E3 ubiquitin ligase) and facilitates the degradation of the known FBXW7 targets, CCNE1 and mTOR. These findings suggest UBE2QL1 as a novel candidate renal tumor suppressor gene.


Asunto(s)
Genes Supresores de Tumor , Predisposición Genética a la Enfermedad , Neoplasias Renales/genética , Translocación Genética , Enzimas Ubiquitina-Conjugadoras/genética , Adulto , Secuencia de Bases , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Puntos de Rotura del Cromosoma , Cromosomas Humanos Par 19 , Cromosomas Humanos Par 5 , Metilación de ADN , Epigénesis Genética , Proteínas F-Box/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Transporte de Proteínas , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
19.
Nat Genet ; 55(1): 66-77, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36543915

RESUMEN

Single-cell transcriptomics has allowed unprecedented resolution of cell types/states in the human lung, but their spatial context is less well defined. To (re)define tissue architecture of lung and airways, we profiled five proximal-to-distal locations of healthy human lungs in depth using multi-omic single cell/nuclei and spatial transcriptomics (queryable at lungcellatlas.org ). Using computational data integration and analysis, we extend beyond the suspension cell paradigm and discover macro and micro-anatomical tissue compartments including previously unannotated cell types in the epithelial, vascular, stromal and nerve bundle micro-environments. We identify and implicate peribronchial fibroblasts in lung disease. Importantly, we discover and validate a survival niche for IgA plasma cells in the airway submucosal glands (SMG). We show that gland epithelial cells recruit B cells and IgA plasma cells, and promote longevity and antibody secretion locally through expression of CCL28, APRIL and IL-6. This new 'gland-associated immune niche' has implications for respiratory health.


Asunto(s)
Pulmón , Mucosa Respiratoria , Humanos , Mucosa Respiratoria/metabolismo , Células Epiteliales/metabolismo , Linfocitos B , Inmunoglobulina A/metabolismo
20.
bioRxiv ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37986877

RESUMEN

T cells develop from circulating precursors, which enter the thymus and migrate throughout specialised sub-compartments to support maturation and selection. This process starts already in early fetal development and is highly active until the involution of the thymus in adolescence. To map the micro-anatomical underpinnings of this process in pre- vs. post-natal states, we undertook a spatially resolved analysis and established a new quantitative morphological framework for the thymus, the Cortico-Medullary Axis. Using this axis in conjunction with the curation of a multimodal single-cell, spatial transcriptomics and high-resolution multiplex imaging atlas, we show that canonical thymocyte trajectories and thymic epithelial cells are highly organised and fully established by post-conception week 12, pinpoint TEC progenitor states, find that TEC subsets and peripheral tissue genes are associated with Hassall's Corpuscles and uncover divergence in the pace and drivers of medullary entry between CD4 vs. CD8 T cell lineages. These findings are complemented with a holistic toolkit for spatial analysis and annotation, providing a basis for a detailed understanding of T lymphocyte development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA