Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunol Cell Biol ; 98(1): 12-21, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31742781

RESUMEN

Acute rheumatic fever (ARF) and chronic rheumatic heart disease (RHD) are autoimmune sequelae of a Group A streptococcal infection with significant global mortality and poorly understood pathogenesis. Immunoglobulin and complement deposition were observed in ARF/RHD valve tissue over 50 years ago, yet contemporary investigations have been lacking. This study applied systems immunology to investigate the relationships between the complement system and immunoglobulin in ARF. Patients were stratified by C-reactive protein (CRP) concentration into high (≥10 µg mL-1 ) and low (<10 µg mL-1 ) groups to distinguish those with clinically significant inflammatory processes from those with abating inflammation. The circulating concentrations of 17 complement factors and six immunoglobulin isotypes and subclasses were measured in ARF patients and highly matched healthy controls using multiplex bead-based immunoassays. An integrative statistical approach combining feature selection and principal component analysis revealed a linked IgG3-C4 response in ARF patients with high CRP that was absent in controls. Strikingly, both IgG3 and C4 were elevated above clinical reference ranges, suggesting these features are a marker of ARF-associated inflammation. Humoral immunity in response to M protein, an antigen implicated in ARF pathogenesis, was completely polarized to IgG3 in the patient group. Furthermore, the anti-M-protein IgG3 response was correlated with circulating IgG3 concentration, highlighting a potential role for this potent immunoglobulin subclass in disease. In conclusion, a linked IgG3-C4 response appears important in the initial, inflammatory stage of ARF and may have immediate utility as a clinical biomarker given the lack of specific diagnostic tests currently available.


Asunto(s)
Complemento C4 , Inmunidad Humoral , Inmunoglobulina G , Fiebre Reumática , Adolescente , Niño , Complemento C4/inmunología , Complemento C4/metabolismo , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Fiebre Reumática/sangre , Fiebre Reumática/inmunología
2.
Lancet Oncol ; 20(6): e327-e335, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31162106

RESUMEN

Precision oncology guided by genomic research has an increasingly important role in the care of people with cancer. However, substantial inequities remain in cancer outcomes of Indigenous peoples, including Indigenous Maori in Aotearoa New Zealand (New Zealand). These inequities will be perpetuated unless deliberate steps are taken to include Indigenous peoples in all parts of cancer research-as research participants, in research leadership, and in research governance. This approach is especially important when there have been historical breaches of trust that have discouraged their participation in health research. This Personal View describes a precision oncology research roadmap for neuroendocrine tumour research, which seeks to reflect the values of New Zealand's Indigenous Maori people. This roadmap includes facilitating ongoing dialogue, Maori leadership, reciprocity, agreed kawa (guiding principles), tikanga (cultural protocols), and honest monitoring of what is and what is not being achieved. We challenge cancer researchers worldwide to generate locally appropriate roadmaps that honestly assess their practices to benefit Indigenous people internationally.


Asunto(s)
Investigación Biomédica , Genómica/métodos , Disparidades en Atención de Salud , Neoplasias/diagnóstico , Neoplasias/etnología , Grupos de Población/etnología , Grupos de Población/genética , Humanos , Neoplasias/genética
3.
Mol Pharmacol ; 95(6): 638-651, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30979813

RESUMEN

Evofosfamide (TH-302) is a hypoxia-activated DNA-crosslinking prodrug currently in clinical development for cancer therapy. Oxygen-sensitive activation of evofosfamide depends on one-electron reduction, yet the reductases that catalyze this process in tumors are unknown. We used RNA sequencing, whole-genome CRISPR knockout, and reductase-focused short hairpin RNA screens to interrogate modifiers of evofosfamide activation in cancer cell lines. Involvement of mitochondrial electron transport in the activation of evofosfamide and the related nitroaromatic compounds EF5 and FSL-61 was investigated using 143B ρ 0 (ρ zero) cells devoid of mitochondrial DNA and biochemical assays in UT-SCC-74B cells. The potency of evofosfamide in 30 genetically diverse cancer cell lines correlated with the expression of genes involved in mitochondrial electron transfer. A whole-genome CRISPR screen in KBM-7 cells identified the DNA damage-response factors SLX4IP, C10orf90 (FATS), and SLFN11, in addition to the key regulator of mitochondrial function, YME1L1, and several complex I constituents as modifiers of evofosfamide sensitivity. A reductase-focused shRNA screen in UT-SCC-74B cells similarly identified mitochondrial respiratory chain factors. Surprisingly, 143B ρ 0 cells showed enhanced evofosfamide activation and sensitivity but had global transcriptional changes, including increased expression of nonmitochondrial flavoreductases. In UT-SCC-74B cells, evofosfamide oxidized cytochromes a, b, and c and inhibited respiration at complexes I, II, and IV without quenching reactive oxygen species production. Our results suggest that the mitochondrial electron transport chain contributes to evofosfamide activation and that predicting evofosfamide sensitivity in patients by measuring the expression of canonical bioreductive enzymes such as cytochrome P450 oxidoreductase is likely to be futile.


Asunto(s)
Transporte de Electrón/efectos de los fármacos , Mitocondrias/genética , Neoplasias/genética , Nitroimidazoles/farmacología , Mostazas de Fosforamida/farmacología , Análisis de Secuencia de ARN/métodos , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Células HCT116 , Humanos , Mitocondrias/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Profármacos , ARN Interferente Pequeño/farmacología
4.
Hum Reprod ; 33(3): 452-463, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29370409

RESUMEN

STUDY QUESTION: Does gene expression of putative endometrial implantation markers vary in expression between menstrual cycles? SUMMARY ANSWER: In fertile women the expression of certain genes exhibits a pattern of stable regulation.which is not affected even when sampled twice in one cycle. WHAT IS KNOWN ALREADY: Successful implantation occurs in a minority of IVF embryo transfers. In contrast to knowledge regarding the ovulatory process, there is a sparse understanding of endometrial genes critical to implantation. This lack of knowledge hinders progress in this field. STUDY DESIGN, SIZE, DURATION: Endometrial pipelle samples were collected based on blood endocrinological markers at 2 and 7 days post initial LH surge. Five samples were collected over four cycles where the interval between collections ranged from sequential months to three years. PARTICIPANTS/MATERIALS, SETTING, METHODS: Six fertile women attending an IVF clinic for male factor infertility, had samples collected. Global gene expression profiles were obtained from laser-microdissected, endometrial glands and stroma. Nineteen potential proliferation, cytokine and adhesion markers based on previous validated reports were studied. MAIN RESULTS AND THE ROLE OF CHANCE: There was a significant modification between LH+2 and LH+7 of expression for 23 genes-11 in 8 in glands and stroma, 4 in stroma only and 3 in glands only suggesting stable, controlled regulation. Nevertheless, genes exhibited individual characteristics, e.g MKI67 exhibited lower expression at LH+7 than LH+2 and CCL4 higher, whereas TRO expressed limited difference in both cell types. Stability between cycles was demonstrated for gene expression at both LH+2-more than 60% of genes had <25% variation and at LH+7-60% had <30% variation. Further, effects of prior collection of an LH+2 sample on gene expression at LH+7 were not detected. The range of mRNA expression suggested that a clinical/diagnostic sample at LH+2 and LH+7 is likely to be a better index of endometrial function than a single sample. The possibility of redundancy suggests a panel would be more informative than a single marker. LARGE SCALE DATA: Raw and normalized microarray data have been deposited with the EMBL's European Genome-Phenome Archive for collaborative analysis, reference ega-box-815 (Lappalainen I, Almeida-King J, Kumanduri V, Senf A, Spalding JD, Ur-Rehman S, Saunders G, Kandasamy J, Caccamo M, Leinonen R et al. The European Genome-phenome Archive of human data consented for biomedical research. Nat Genet 2015;47:692-695.) [https://www.ebi.ac.uk/ega/home]. LIMITATIONS, REASONS FOR CAUTION: This type of research has difficulties of recruitment of fertile women for multiple blood testing and repeat endometrial biopsies. Therefore, these data had decreased statistical power due to the overall participant numbers. However, the inclusion of four cycles for each participant permitted the aim of obtaining information on intercycle and intracycle variability to be achieved. WIDER IMPLICATIONS OF THE FINDINGS: Our results support the feasibility of a clinical means of identification of a functional receptive endometrium. The robustness of data from individual women suggests that samples from one cycle can generally be applied to subsequent cycles. STUDY FUNDING/COMPETING INTEREST(S): Funding was granted from the Tertiary Education Commission of New Zealand, Contract I.D.:UOOX06007. There are no competing interests.


Asunto(s)
Endometrio/metabolismo , Regulación de la Expresión Génica , Ciclo Menstrual/genética , Implantación del Embrión/fisiología , Femenino , Humanos , Ciclo Menstrual/metabolismo , Transcriptoma
5.
Cell Commun Signal ; 16(1): 88, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30466445

RESUMEN

BACKGROUND: Depletion of tryptophan and the accumulation of tryptophan metabolites mediated by the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1), trigger immune cells to undergo apoptosis. However, cancer cells in the same microenvironment appear not to be affected. Mechanisms whereby cancer cells resist accelerated tryptophan degradation are not completely understood. We hypothesize that cancer cells co-opt IMPACT (the product of IMPrinted and AnCienT gene), to withstand periods of tryptophan deficiency. METHODS: A range of bioinformatic techniques including correlation and gene set variation analyses was applied to genomic datasets of cancer (The Cancer Genome Atlas) and normal (Genotype Tissue Expression Project) tissues to investigate IMPACT's role in cancer. Survival of IMPACT-overexpressing GL261 glioma cells and their wild type counterparts cultured in low tryptophan media was assessed using fluorescence microscopy and MTT bio-reduction assay. Expression of the Integrated Stress Response proteins was measured using Western blotting. RESULTS: We found IMPACT to be upregulated and frequently amplified in a broad range of clinical cancers relative to their non-malignant tissue counterparts. In a subset of clinical cancers, high IMPACT expression associated with decreased activity of pathways and genes involved in stress response and with increased activity of translational regulation such as the mTOR pathway. Experimental studies using the GL261 glioma line showed that cells engineered to overexpress IMPACT, gained a survival advantage over wild-type lines when cultured under limiting tryptophan concentrations. No significant difference in the expression of proteins in the Integrated Stress Response pathway was detected in tryptophan-deprived GL261 IMPACT-overexpressors compared to that in wild-type cells. IMPACT-overexpressing GL261 cells but not their wild-type counterparts, showed marked enlargement of their nuclei and cytoplasmic area when stressed by tryptophan deprivation. CONCLUSIONS: The bioinformatics data together with our laboratory studies, support the hypothesis that IMPACT mediates a protective mechanism allowing cancer cells to overcome microenvironmental stresses such as tryptophan deficiency.


Asunto(s)
Triptófano/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/genética , Biología Computacional , Metilación de ADN , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Ratones , Estrés Fisiológico/genética
6.
Biochim Biophys Acta ; 1849(3): 257-69, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25542856

RESUMEN

The cohesin complex has essential roles in cell division, DNA damage repair and gene transcription. The transcriptional function of cohesin is thought to derive from its ability to connect distant regulatory elements with gene promoters. Genome-wide binding of cohesin in breast cancer cells frequently coincides with estrogen receptor alpha (ER), leading to the hypothesis that cohesin facilitates estrogen-dependent gene transcription. We found that cohesin modulates the expression of only a subset of genes in the ER transcription program, either activating or repressing transcription depending on the gene target. Estrogen-responsive genes most significantly influenced by cohesin were enriched in pathways associated with breast cancer progression such as PI3K and ErbB1. In MCF7 breast cancer cells, cohesin depletion enhanced transcription of TFF1 and TFF2, and was associated with increased ER binding and increased interaction between TFF1 and its distal enhancer situated within TMPRSS3. In contrast, cohesin depletion reduced c-MYC mRNA and was accompanied by reduced interaction between a distal enhancer of c-MYC and its promoters. Our data indicates that cohesin is not a universal facilitator of ER-induced transcription and can even restrict enhancer-promoter communication. We propose that cohesin modulates transcription of estrogen-dependent genes to achieve appropriate directionality and amplitude of expression.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Receptor alfa de Estrógeno/biosíntesis , Estrógenos , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrógeno/genética , Estrógenos/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Regiones Promotoras Genéticas , Transcripción Genética , Factor Trefoil-2 , Cohesinas
7.
Int J Cancer ; 139(5): 1157-70, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27072400

RESUMEN

Chemotherapy with taxanes such as paclitaxel (PTX) is a key component of triple negative breast cancer (TNBC) treatment. PTX is used in combination with other drugs in both the adjuvant setting and in advanced breast cancer. Because a proportion of patients respond poorly to PTX or relapse after its use, a greater understanding of the mechanisms conferring resistance to PTX is required. One protein shown to be involved in drug resistance is Y-box binding protein 1 (YB-1). High levels of YB-1 have previously been associated with resistance to PTX in TNBCs. In this study, we aimed to determine mechanisms by which YB-1 confers PTX resistance. We generated isogenic TNBC cell lines that differed by YB-1 levels and treated these with PTX. Using microarray analysis, we identified EGR1 as a potential target of YB-1. We found that low EGR1 mRNA levels are associated with poor breast cancer patient prognosis, and that EGR1 and YBX1 mRNA expression was inversely correlated in a TNBC line and in a proportion of TNBC tumours. Reducing the levels of EGR1 caused TNBC cells to become more resistant to PTX. Given that PTX targets cycling cells, we propose a model whereby high YB-1 levels in some TNBC cells can lead to reduced levels of EGR1, which in turn promotes slow cell cycling and resistance to PTX. Therefore YB-1 and EGR1 levels are biologically linked and may provide a biomarker for TNBC response to PTX.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Resistencia a Antineoplásicos , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Paclitaxel/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/mortalidad , Proteína 1 de Unión a la Caja Y/genética
8.
Bioinformatics ; 31(2): 277-8, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25246431

RESUMEN

UNLABELLED: The wide variety of published approaches for the problem of regulatory network inference makes using multiple inference algorithms complex and time-consuming. Network Analysis and Inference Library (NAIL) is a set of software tools to simplify the range of computational activities involved in regulatory network inference. It uses a modular approach to connect different network inference algorithms to the same visualization and network-based analyses. NAIL is technology-independent and includes an interface layer to allow easy integration of components into other applications. AVAILABILITY AND IMPLEMENTATION: NAIL is implemented in MATLAB, runs on Windows, Linux and OSX, and is available from SourceForge at https://sourceforge.net/projects/nailsystemsbiology/ for all researchers to use. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Gráficos por Computador , Redes Reguladoras de Genes , Programas Informáticos , Biología de Sistemas/métodos , Algoritmos , Humanos
9.
FASEB J ; 27(10): 4226-43, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23845863

RESUMEN

Obesity is highly prevalent, and its incidence is increasing. The previous study showing a major effect of paternal obesity on metabolic health of offspring is confounded by comorbidity with diabetes. Therefore, we investigated the effect of diet-induced paternal obesity, in the absence of diabetes, on the metabolic health of two resultant generations and the molecular profiles of the testes and sperm. Founder (F0) male C57BL6 mice were fed either a high-fat diet (HFD) or a control diet (CD); n = 10/diet for a period of 10 wk. Testis expression of mRNA/microRNAs was analyzed by microarray and qPCR and sperm microRNA abundance by qPCR. Two subsequent generations were generated by mating F0 and then F1 mice to CD mice, and their metabolic health was investigated. All mice, other than F0 males, were maintained on a CD. HFD feeding induced paternal obesity with a 21% increase in adiposity, but not overt diabetes, and initiated intergenerational transmission of obesity and insulin resistance in two generations of offspring. This distinct phenotypic constellation is either partially or fully transmitted to both female and male F1 offspring and further transmitted through both parental lineages to the F2 generation, with a heightened effect on female F1 offspring (+67% in adiposity) and their F2 sons (+24% in adiposity). Founder male obesity altered the testes expression of 414 mRNAs by microarray and 11 microRNAs by qPCR, concomitant with alterations in sperm microRNA content and a 25% reduction in global methylation of germ cell DNA. Diet-induced paternal obesity modulates sperm microRNA content and germ cell methylation status, which are potential signals that program offspring health and initiate the transmission of obesity and impaired metabolic health to future generations. This study implicates paternal obesity in the transgenerational amplification of obesity and type 2 diabetes in humans.


Asunto(s)
MicroARNs/metabolismo , Obesidad/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Transcriptoma/fisiología , Animales , Metabolismo Energético , Femenino , Regulación de la Expresión Génica/fisiología , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Obesidad/genética , Especies Reactivas de Oxígeno , Factores Sexuales
10.
Biochem J ; 449(1): 11-23, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23216250

RESUMEN

Hanahan and Weinberg have proposed the 'hallmarks of cancer' to cover the biological changes required for the development and persistence of tumours [Hanahan and Weinberg (2011) Cell 144, 646-674]. We have noted that many of these cancer hallmarks are facilitated by the multifunctional protein YB-1 (Y-box-binding protein 1). In the present review we evaluate the literature and show how YB-1 modulates/regulates cellular signalling pathways within each of these hallmarks. For example, we describe how YB-1 regulates multiple proliferation pathways, overrides cell-cycle check points, promotes replicative immortality and genomic instability, may regulate angiogenesis, has a role in invasion and metastasis, and promotes inflammation. We also argue that there is strong and sufficient evidence to suggest that YB-1 is an excellent molecular marker of cancer progression that could be used in the clinic, and that YB-1 could be a useful target for cancer therapy.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Proteína 1 de Unión a la Caja Y/fisiología , Animales , Biomarcadores de Tumor/fisiología , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Humanos , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Proteínas Oncogénicas/fisiología , Pronóstico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
11.
Nucleic Acids Res ; 40(6): 2377-98, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22121215

RESUMEN

Gene regulatory networks inferred from RNA abundance data have generated significant interest, but despite this, gene network approaches are used infrequently and often require input from bioinformaticians. We have assembled a suite of tools for analysing regulatory networks, and we illustrate their use with microarray datasets generated in human endothelial cells. We infer a range of regulatory networks, and based on this analysis discuss the strengths and limitations of network inference from RNA abundance data. We welcome contact from researchers interested in using our inference and visualization tools to answer biological questions.


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Programas Informáticos , Células Cultivadas , Gráficos por Computador , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , FN-kappa B/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Interferente Pequeño , Factor de Necrosis Tumoral alfa/farmacología
12.
BMC Genomics ; 14: 102, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23405961

RESUMEN

BACKGROUND: Many studies have revealed correlations between breast tumour phenotypes, variations in gene expression, and patient survival outcomes. The molecular heterogeneity between breast tumours revealed by these studies has allowed prediction of prognosis and has underpinned stratified therapy, where groups of patients with particular tumour types receive specific treatments. The molecular tests used to predict prognosis and stratify treatment usually utilise fixed sets of genomic biomarkers, with the same biomarker sets being used to test all patients. In this paper we suggest that instead of fixed sets of genomic biomarkers, it may be more effective to use a stratified biomarker approach, where optimal biomarker sets are automatically chosen for particular patient groups, analogous to the choice of optimal treatments for groups of similar patients in stratified therapy. We illustrate the effectiveness of a biclustering approach to select optimal gene sets for determining the prognosis of specific strata of patients, based on potentially overlapping, non-discrete molecular characteristics of tumours. RESULTS: Biclustering identified tightly co-expressed gene sets in the tumours of restricted subgroups of breast cancer patients. The co-expressed genes in these biclusters were significantly enriched for particular biological annotations and gene regulatory modules associated with breast cancer biology. Tumours identified within the same bicluster were more likely to present with similar clinical features. Bicluster membership combined with clinical information could predict patient prognosis in conditional inference tree and ridge regression class prediction models. CONCLUSIONS: The increasing clinical use of genomic profiling demands identification of more effective methods to segregate patients into prognostic and treatment groups. We have shown that biclustering can be used to select optimal gene sets for determining the prognosis of specific strata of patients.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Biología Computacional/métodos , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Biomarcadores de Tumor/genética , Neoplasias de la Mama/patología , Análisis por Conglomerados , Supervivencia sin Enfermedad , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Recurrencia , Transcriptoma
13.
Stem Cells ; 30(7): 1338-48, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22674792

RESUMEN

Y-box binding protein-1 (YB-1) is the first reported oncogenic transcription factor to induce the tumor-initiating cell (TIC) surface marker CD44 in triple-negative breast cancer (TNBC) cells. In order for CD44 to be induced, YB-1 must be phosphorylated at S102 by p90 ribosomal S6 kinase (RSK). We therefore questioned whether RSK might be a tractable molecular target to eliminate TICs. In support of this idea, injection of MDA-MB-231 cells expressing Flag-YB-1 into mice increased tumor growth as well as enhanced CD44 expression. Despite enrichment for TICs, these cells were sensitive to RSK inhibition when treated ex vivo with BI-D1870. Targeting RSK2 with small interfering RNA (siRNA) or small molecule RSK kinase inhibitors (SL0101 and BI-D1870) blocked TNBC monolayer cell growth by ∼100%. In a diverse panel of breast tumor cell line models RSK2 siRNA predominantly targeted models of TNBC. RSK2 inhibition decreased CD44 promoter activity, CD44 mRNA, protein expression, and mammosphere formation. CD44(+) cells had higher P-RSK(S221/227) , P-YB-1(S102) , and mitotic activity relative to CD44(-) cells. Importantly, RSK2 inhibition specifically suppressed the growth of TICs and triggered cell death. Moreover, silencing RSK2 delayed tumor initiation in mice. In patients, RSK2 mRNA was associated with poor disease-free survival in a cohort of 244 women with breast cancer that had not received adjuvant treatment, and its expression was highest in the basal-like breast cancer subtype. Taking this further, we report that P-RSK(S221/227) is present in primary TNBCs and correlates with P-YB-1(S102) as well as CD44. In conclusion, RSK2 inhibition provides a novel therapeutic avenue for TNBC and holds the promise of eliminating TICs.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Benzopiranos/farmacología , Western Blotting , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Monosacáridos/farmacología , Regiones Promotoras Genéticas/genética , Pteridinas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteína 1 de Unión a la Caja Y/genética
14.
J Invest Dermatol ; 143(7): 1168-1177.e2, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36736454

RESUMEN

Merkel cell carcinoma is a rare, aggressive skin tumor initiated by polyomavirus integration or UV light DNA damage. In New Zealand, there is a propensity toward the UV-driven form (31 of 107, 29% virus positive). Using archival formalin-fixed, paraffin-embedded tissues, we report targeted DNA sequencing covering 246 cancer genes on 71 tumor tissues and 38 nonmalignant tissues from 37 individuals, with 33 of 37 being negative for the virus. Somatic variants of New Zealand virus-negative Merkel cell carcinomas partially overlapped with those reported overseas, including TP53 variants in all tumors and RB1, LRP1B, NOTCH1, and EPHA3/7 variants each found in over half of the cohort. Variants in genes not analyzed or reported in previous studies were also found. Cataloging variants in TP53 and RB1 from published datasets revealed a broad distribution across these genes. Chr 1p gain and Chr 3p loss were identified in around 50% of New Zealand virus-negative Merkel cell carcinomas, and RB1 loss of heterozygosity was found in 90% of cases. Copy number variants accumulate in most metastases. Virus-negative Merkel cell carcinomas have complex combinations of somatic DNA-sequence variants and copy number variants. They likely carry the small genomic changes permissive for metastasis from early tumor development; however, chromosomal alterations may contribute to driving metastatic progression.


Asunto(s)
Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Infecciones por Polyomavirus , Neoplasias Cutáneas , Infecciones Tumorales por Virus , Humanos , Carcinoma de Células de Merkel/patología , Mutación , Neoplasias Cutáneas/genética , Oncogenes , Aberraciones Cromosómicas , Poliomavirus de Células de Merkel/genética , Infecciones por Polyomavirus/genética , Infecciones Tumorales por Virus/genética
15.
Cancer Gene Ther ; 30(12): 1610-1623, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37684549

RESUMEN

Transplantable in vivo CRISPR/Cas9 knockout screens, in which cells are edited in vitro and inoculated into mice to form tumours, allow evaluation of gene function in a cancer model that incorporates the multicellular interactions of the tumour microenvironment. To improve our understanding of the key parameters for success with this method, we investigated the choice of cell line, mouse host, tumour harvesting timepoint and guide RNA (gRNA) library size. We found that high gRNA (80-95%) representation was maintained in a HCT116 subline transduced with the GeCKOv2 whole-genome gRNA library and transplanted into NSG mice when tumours were harvested at early (14 d) but not late time points (38-43 d). The decreased representation in older tumours was accompanied by large increases in variance in gRNA read counts, with notable expansion of a small number of random clones in each sample. The variable clonal dynamics resulted in a high level of 'noise' that limited the detection of gRNA-based selection. Using simulated datasets derived from our experimental data, we show that considerable reductions in count variance would be achieved with smaller library sizes. Based on our findings, we suggest a pathway to rationally design adequately powered in vivo CRISPR screens for successful evaluation of gene function.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Ratones , Animales , Anciano , Edición Génica/métodos , Xenoinjertos , ARN Guía de Sistemas CRISPR-Cas , Células Clonales
16.
Mol Diagn Ther ; 27(4): 537-550, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37099071

RESUMEN

BACKGROUND: Circulating tumour DNA (ctDNA) analysis promises to improve the clinical care of people with cancer, address health inequities and guide translational research. This observational cohort study used ctDNA to follow 29 patients with advanced-stage cutaneous melanoma through multiple cycles of immunotherapy. METHOD: A melanoma-specific ctDNA next-generation sequencing (NGS) panel, droplet digital polymerase chain reaction (ddPCR) and mass spectrometry analysis were used to identify ctDNA mutations in longitudinal blood plasma samples from Aotearoa New Zealand (NZ) patients receiving immunotherapy for melanoma. These technologies were used in conjunction to identify the breadth and complexity of tumour genomic information that ctDNA analysis can reliably report. RESULTS: During the course of immunotherapy treatment, a high level of dynamic mutational complexity was identified in blood plasma, including multiple BRAF mutations in the same patient, clinically relevant BRAF mutations emerging through therapy and co-occurring sub-clonal BRAF and NRAS mutations. The technical validity of this ctDNA analysis was supported by high sample analysis-reanalysis concordance, as well as concordance between different ctDNA measurement technologies. In addition, we observed > 90% concordance in the detection of ctDNA when using cell-stabilising collection tubes followed by 7-day delayed processing, compared with standard EDTA blood collection protocols with rapid processing. We also found that the undetectability of ctDNA at a proportion of treatment cycles was associated with durable clinical benefit (DCB). CONCLUSION: We found that multiple ctDNA processing and analysis methods consistently identified complex longitudinal patterns of clinically relevant mutations, adding support for expanded clinical trials of this technology in a variety of oncology settings.


Asunto(s)
ADN Tumoral Circulante , Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Melanoma/terapia , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/terapia , ADN Tumoral Circulante/genética , Proteínas Proto-Oncogénicas B-raf/genética , ADN de Neoplasias , Mutación , Inmunoterapia , Melanoma Cutáneo Maligno
17.
Cancer Res Commun ; 3(1): 31-42, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36968225

RESUMEN

Tumor evolution underlies many challenges facing precision oncology, and improving our understanding has the potential to improve clinical care. This study represents a rare opportunity to study tumor heterogeneity and evolution in a patient with an understudied cancer type. A patient with pulmonary atypical carcinoid, a neuroendocrine tumor, metastatic to 90 sites, requested and consented to donate tissues for research. 42 tumor samples collected at rapid autopsy from 14 anatomically distinct sites were analyzed through DNA whole-exome sequencing and RNA sequencing, and five analyzed through linked-read sequencing. Targeted DNA sequencing was completed on two clinical tissue biopsies and one blood plasma sample. Chromosomal alterations and gene variants accumulated over time, and specific chromosomal alterations preceded the single predicted gene driver variant (ARID1A). At the time of autopsy, all sites shared the gain of one copy of Chr 5, loss of one copy of Chr 6 and 21, chromothripsis of one copy of Chr 11, and 39 small variants. Two tumor clones (carrying additional variants) were detected at metastatic sites, and occasionally in different regions of the same organ (e.g., within the pancreas). Circulating tumor DNA (ctDNA) sequencing detected shared tumor variants in the blood plasma and captured marked genomic heterogeneity, including all metastatic clones but few private tumor variants. This study describes genomic tumor evolution and dissemination of a pulmonary atypical carcinoid donated by a single generous patient. It highlights the critical role of chromosomal alterations in tumor initiation and explores the potential of ctDNA analysis to represent genomically heterogeneous disease. Significance: DNA sequencing data from tumor samples and blood plasma from a single patient highlighted the critical early role of chromosomal alterations in atypical carcinoid tumor development. Common tumor variants were readily detected in the blood plasma, unlike emerging tumor variants, which has implications for using ctDNA to capture cancer evolution.


Asunto(s)
Tumor Carcinoide , Carcinoma Neuroendocrino , Neoplasias Pulmonares , Humanos , Biomarcadores de Tumor/genética , Medicina de Precisión , Neoplasias Pulmonares/genética , Genómica , Tumor Carcinoide/genética
18.
Mol Cell Biochem ; 364(1-2): 131-45, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22219026

RESUMEN

A novel murine enzyme, ADP-dependent glucokinase (ADPGK), has been shown to catalyse glucose phosphorylation using ADP as phosphoryl donor. The ancestral ADPGK gene appears to have been laterally transferred from Archaea early in metazoan evolution, but its biological role has not been established. Here, we undertake an initial investigation of the functional properties of human ADPGK in human tumour cell lines and specifically test the hypothesis that ADPGK might prime glycolysis using ADP under stress conditions such as hypoxia. Recombinant human ADPGK was confirmed to catalyse ADP-dependent glucose phosphorylation in vitro, with an apparent K (M) for glucose of 0.29 mM. Expression databases and western blotting of surgical samples demonstrated high expression in many human tissues, including tumours. Unlike hexokinase-2 (HK2), RNAi studies with exon arrays showed that ADPGK is not a transcriptional target of hypoxia inducible factor-1. Consistent with this, ADPGK protein was not upregulated by hypoxia or anoxia. Surprisingly, stable fivefold overexpression of ADPGK in H460 or HCT116 cells had no apparent effect on proliferation or glycolysis, and did not rescue clonogenicity or glycolysis when HK2 was suppressed by siRNA. Furthermore, suppression of ADPGK by siRNA did not cause detectable inhibition of glycolysis or cell killing by anoxia, although it did induce a statistically significant decrease in plating efficiency of H460 cells under aerobic conditions. Thus, human ADPGK catalyses ADP-dependent phosphorylation of glucose in vitro, but despite its high expression in human tumour cell lines it appears not to make a quantifiable contribution to glycolysis under the conditions evaluated.


Asunto(s)
Glucoquinasa/genética , Glucoquinasa/metabolismo , Glucosa/metabolismo , Glucólisis , Proteínas Recombinantes/metabolismo , Adenosina Difosfato/metabolismo , Catálisis , Hipoxia de la Célula/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Glucosa/farmacología , Células HCT116 , Células HT29 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ácido Láctico/metabolismo , Fosforilación , ARN Interferente Pequeño , Proteínas Recombinantes/genética
19.
J Pathol ; 224(2): 261-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21480232

RESUMEN

Endometriosis is a common chronic gynaecological condition, affecting 5-10% of women of child-bearing age. Its study has been hampered by lack of genetically tractable models. We transplanted steroid-manipulated, menstrual-like endometrium from K-ras(G12V/+) /Ah-Cre(+/+) /ROSA26R-LacZ(+/+) mice into gonad-intact immunocompetent wild-type mice. This led to endometriosis-like lesion development. Long-term lesion survival depended on the presence of the activated K-ras in the small proportion of the cells in the mature lesion that had undergone Cre-mediated K-ras activation. LacZ activity demonstrated Cre-mediated recombination in both endometrial epithelial cells and stromal cells, and transgenic K-ras expression was confirmed by RT-PCR. The endometriosis lesions developed without exogenous oestradiol supplementation and anti-oestrogen (fulvestrant, ICI 182780) treatment greatly suppressed their growth. Immunohistochemistry confirmed that as in human endometriosis, there was invasion and activation of fibroblasts, endothelial cells, and macrophages, with marked collagen deposition in the lesions. This model provides an opportunity to investigate endometriosis lesion establishment, growth, and regression in genetically tractable, immunocompetent, and hormonally intact mice. Furthermore, for the first time it provides a suitable model to test clinically validated driver genes in a faithful mouse model of the predisposing endometriotic lesion, thus providing the correct cellular context and microenvironment for ovarian clear cell carcinogenesis.


Asunto(s)
Endometriosis/genética , Genes ras/genética , Mutación , Animales , Modelos Animales de Enfermedad , Endometriosis/metabolismo , Endometriosis/patología , Endometriosis/prevención & control , Células Epiteliales/patología , Estradiol/análogos & derivados , Estradiol/uso terapéutico , Estradiol/toxicidad , Antagonistas de Estrógenos/uso terapéutico , Matriz Extracelular/fisiología , Femenino , Fulvestrant , Inmunocompetencia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de Estrógenos/metabolismo , Células del Estroma/patología
20.
Pancreas ; 51(9): 1092-1104, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37078930

RESUMEN

ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC) is notorious for its poor outcome. The presence of a dense desmoplastic stroma is a hallmark of this malignancy, and abundant hyaluronic acid (HA) within this stroma is a common feature of PDAC. At the end of 2019, an HA-targeting drug, after initial promise, failed phase 3 clinical trials in PDAC. This failure in the face of such strong evidence for biological importance forces us to turn back to the research and seek a better understanding of HA biology in PDAC. Therefore, in this review, we reexamine what is known about HA biology, the methods used to detect and quantify HA, and the ability of the biological models in which HA has been investigated to recapitulate an HA-rich desmoplastic tumor stroma. The role of HA in PDAC relies on its complex interplay with a range of HA-associated molecules, which have not been as extensively investigated as HA itself. Therefore, using large genomic data sets, we cataloged the abundance and activity in PDAC of molecules that modulate HA synthesis, degradation, protein interactions, and receptor binding. Based on their association with clinical characteristics and individual patient outcomes, we suggest a small number of HA-associated molecules that warrant further investigation as biomarkers and drug targets.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ácido Hialurónico/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Biología , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA