Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Molecules ; 23(6)2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29912160

RESUMEN

Macrocyclic peptides are privileged scaffolds for drug development and constitute a significant portion of macrocyclic drugs on the market today in fields spanning from infectious disease to oncology. Developing orally bioavailable peptide-based drugs remains a challenging task; however, macrocyclization of linear peptides can be an effective strategy to improve membrane permeability, proteolytic stability, oral bioavailability, and overall drug-like characteristics for this class. Significant advances in solid-phase peptide synthesis (SPPS) have enabled the efficient construction of macrocyclic peptide and peptidomimetic libraries with macrolactamization being performed on-resin or in solution phase. The primary goal of this review is to summarize solid-phase cyclohexapeptide synthesis using the on-resin and solution-phase macrocyclization methodologies published since 2013. We also highlight their broad applications ranging from natural product total synthesis, synthetic methodology development, and medicinal chemistry, to drug development and analyses of conformational and physiochemical properties.


Asunto(s)
Péptidos Cíclicos/síntesis química , Técnicas de Síntesis en Fase Sólida/métodos , Disponibilidad Biológica , Química Farmacéutica , Estructura Molecular , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacocinética , Peptidomiméticos/síntesis química , Peptidomiméticos/química , Peptidomiméticos/farmacología
2.
Bioorg Med Chem Lett ; 27(24): 5393-5399, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29153737

RESUMEN

In our ongoing effort of discovering anticancer and chemopreventive agents, a series of 2-arylindole derivatives were synthesized and evaluated toward aromatase and quinone reductase 1 (QR1). Biological evaluation revealed that several compounds (e.g., 2d, IC50 = 1.61 µM; 21, IC50 = 3.05 µM; and 27, IC50 = 3.34 µM) showed aromatase inhibitory activity with half maximal inhibitory concentration (IC50) values in the low micromolar concentrations. With regard to the QR1 induction activity, 11 exhibited the highest QR1 induction ratio (IR) with a low concentration to double activity (CD) value (IR = 8.34, CD = 2.75 µM), while 7 showed the most potent CD value of 1.12 µM. A dual acting compound 24 showed aromatase inhibition (IC50 = 9.00 µM) as well as QR1 induction (CD = 5.76 µM) activities. Computational docking studies using CDOCKER (Discovery Studio 3.5) provided insight in regard to the potential binding modes of 2-arylindoles within the aromatase active site. Predominantly, the 2-arylindoles preferred binding with the 2-aryl group toward a small hydrophobic pocket within the active site. The C-5 electron withdrawing group on indole was predicted to have an important role and formed a hydrogen bond with Ser478 (OH). Alternatively, meta-pyridyl analogs may orient with the pyridyl 3'-nitrogen coordinating with the heme group.


Asunto(s)
Antineoplásicos/síntesis química , Inhibidores de la Aromatasa/química , Aromatasa/química , Indoles/química , NAD(P)H Deshidrogenasa (Quinona)/química , Antineoplásicos/química , Antineoplásicos/farmacología , Aromatasa/metabolismo , Inhibidores de la Aromatasa/metabolismo , Sitios de Unión , Dominio Catalítico , Línea Celular Tumoral , Humanos , Indoles/metabolismo , Indoles/farmacología , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Relación Estructura-Actividad
3.
J Virol ; 89(9): 4942-50, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25694593

RESUMEN

UNLABELLED: Feline infectious peritonitis and virulent, systemic calicivirus infection are caused by certain types of feline coronaviruses (FCoVs) and feline caliciviruses (FCVs), respectively, and are important infectious diseases with high fatality rates in members of the Felidae family. While FCoV and FCV belong to two distinct virus families, the Coronaviridae and the Caliciviridae, respectively, they share a dependence on viral 3C-like protease (3CLpro) for their replication. Since 3CLpro is functionally and structurally conserved among these viruses and essential for viral replication, 3CLpro is considered a potential target for the design of antiviral drugs with broad-spectrum activities against these distinct and highly important viral infections. However, small-molecule inhibitors against the 3CLpro enzymes of FCoV and FCV have not been previously identified. In this study, derivatives of peptidyl compounds targeting 3CLpro were synthesized and evaluated for their activities against FCoV and FCV. The structures of compounds that showed potent dual antiviral activities with a wide margin of safety were identified and are discussed. Furthermore, the in vivo efficacy of 3CLpro inhibitors was evaluated using a mouse model of coronavirus infection. Intraperitoneal administration of two 3CLpro inhibitors in mice infected with murine hepatitis virus A59, a hepatotropic coronavirus, resulted in significant reductions in virus titers and pathological lesions in the liver compared to the findings for the controls. These results suggest that the series of 3CLpro inhibitors described here may have the potential to be further developed as therapeutic agents against these important viruses in domestic and wild cats. This study provides important insights into the structure and function relationships of 3CLpro for the design of antiviral drugs with broader antiviral activities. IMPORTANCE: Feline infectious peritonitis virus (FIPV) is the leading cause of death in young cats, and virulent, systemic feline calicivirus (vs-FCV) causes a highly fatal disease in cats for which no preventive or therapeutic measure is available. The genomes of these distinct viruses, which belong to different virus families, encode a structurally and functionally conserved 3C-like protease (3CLpro) which is a potential target for broad-spectrum antiviral drug development. However, no studies have previously reported a structural platform for the design of antiviral drugs with activities against these viruses or on the efficacy of 3CLpro inhibitors against coronavirus infection in experimental animals. In this study, we explored the structure-activity relationships of the derivatives of 3CLpro inhibitors and identified inhibitors with potent dual activities against these viruses. In addition, the efficacy of the 3CLpro inhibitors was demonstrated in mice infected with a murine coronavirus. Overall, our study provides the first insight into a structural platform for anti-FIPV and anti-FCV drug development.


Asunto(s)
Antivirales/aislamiento & purificación , Calicivirus Felino/enzimología , Coronavirus Felino/enzimología , Inhibidores de Proteasas/aislamiento & purificación , Proteínas Virales/antagonistas & inhibidores , Proteasas Virales 3C , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Calicivirus Felino/efectos de los fármacos , Gatos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/patología , Coronavirus Felino/efectos de los fármacos , Cisteína Endopeptidasas , Modelos Animales de Enfermedad , Femenino , Hígado/patología , Ratones Endogámicos BALB C , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , Resultado del Tratamiento
4.
Nanomedicine ; 11(7): 1695-704, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25959927

RESUMEN

The proteolytic activity of cathepsin B in complex breast cell lysates has been measured with alternating current voltammetry (ACV) using ferrocene (Fc)-labeled-tetrapeptides immobilized on nanoelectrode arrays (NEAs) fabricated with vertically aligned carbon nanofibers (VACNFs). Four types of breast cells have been tested, including normal breast cells (HMEC), transformed breast cells (MCF-10A), breast cancer cells (T47D), and metastatic breast cancer cells (MDA-MB-231). The detected protease activity was found increased in cancer cells, with the MDA-MB-231 metastatic cancer cell lysate showing the highest cathepsin B activity. The equivalent cathepsin B concentration in MDA-MB-231 cancer cell lysate was quantitatively determined by spiking recombinant cathepsin B into the immunoprecipitated MDA-MB-231 lysate and the HMEC whole cell lysate. The results illustrated the potential of this technique as a portable multiplex electronic device for cancer diagnosis and treatment monitoring through rapid profiling the activity of specific cancer-relevant proteases. FROM THE CLINICAL EDITOR: Breast cancer is the most common cancer in women. In this report, the authors applied the technique of nanoelectrode arrays to try to detect and compare cathepsin B activities in normal and breast cancer cells. It was found that protease activity correlated positively with the degree of malignancy cancer cells. Taking this further, this technique may be useful for rapid diagnosis of cancer in the future.


Asunto(s)
Neoplasias de la Mama/genética , Catepsina B/aislamiento & purificación , Nanofibras/química , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Carbono/química , Catepsina B/genética , Línea Celular Tumoral , Femenino , Humanos , Proteolisis
5.
Bioorg Med Chem Lett ; 24(4): 1057-61, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24480468

RESUMEN

Various triacsin C analogs, containing different alkenyl chains and carboxylic acid bioisoteres including 4-aminobenzoic acid, isothiazolidine dioxide, hydroxylamine, hydroxytriazene, and oxadiazolidine dione, were synthesized and their inhibitions of long chain fatty acyl-CoA synthetase (ACSL) were examined. Two methods, a cell-based assay of ACSL activity and an in situ [(14)C]-palmitate incorporation into extractable lipids were used to study the inhibition. Using an in vivo leukocyte recruitment inhibition protocol, the translocation of one or more cell adhesion molecules from the cytoplasm to the plasma membrane on either the endothelium or leukocyte or both was inhibited by inhibitors 1, 9, and triacsin C. The results suggest that inhibition of ACSL may attenuate the vascular inflammatory component associated with ischemia reperfusion injury and lead to a decrease of infarct expansion.


Asunto(s)
Coenzima A Ligasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Daño por Reperfusión/tratamiento farmacológico , Animales , Línea Celular , Coenzima A Ligasas/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Ratones , Estructura Molecular , Daño por Reperfusión/enzimología , Daño por Reperfusión/metabolismo , Relación Estructura-Actividad
6.
Bioorg Med Chem Lett ; 23(1): 62-5, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23218713

RESUMEN

Noroviruses are the most common cause of acute viral gastroenteritis, accounting for >21 million cases annually in the US alone. Norovirus infections constitute an important health problem for which there are no specific antiviral therapeutics or vaccines. In this study, a series of bisulfite adducts derived from representative transition state inhibitors (dipeptidyl aldehydes and α-ketoamides) was synthesized and shown to exhibit anti-norovirus activity in a cell-based replicon system. The ED(50) of the most effective inhibitor was 60 nM. This study demonstrates for the first time the utilization of bisulfite adducts of transition state inhibitors in the inhibition of norovirus 3C-like protease in vitro and in a cell-based replicon system. The approach described herein can be extended to the synthesis of the bisulfite adducts of other classes of transition state inhibitors of serine and cysteine proteases, such as α-ketoheterocycles and α-ketoesters.


Asunto(s)
Antivirales/química , Norovirus/enzimología , Péptido Hidrolasas/química , Inhibidores de Proteasas/química , Sulfitos/química , Proteínas Virales/antagonistas & inhibidores , Animales , Antivirales/síntesis química , Antivirales/metabolismo , Células CHO , Cricetinae , Cricetulus , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/metabolismo , Unión Proteica , Sulfitos/síntesis química , Sulfitos/metabolismo , Proteínas Virales/metabolismo
7.
Bioorg Med Chem Lett ; 23(23): 6317-20, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24125888

RESUMEN

A class of tripeptidyl transition state inhibitors containing a P1 glutamine surrogate, a P2 leucine, and a P3 arylalanines, was found to potently inhibit Norwalk virus replication in enzyme and cell based assays. An array of warheads, including aldehyde, α-ketoamide, bisulfite adduct, and α-hydroxyphosphonate transition state mimic, was also investigated. Tripeptidyls 2 and 6 possess antiviral activities against noroviruses, human rhinovirus, severe acute respiratory syndrome coronavirus, and coronavirus 229E, suggesting a broad range of antiviral activities.


Asunto(s)
Antivirales/síntesis química , Antivirales/farmacología , Cisteína Endopeptidasas/metabolismo , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/farmacología , Antivirales/química , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/química , Diseño de Fármacos , Glutamina/análogos & derivados , Glutamina/farmacología , Humanos , Modelos Moleculares , Inhibidores de Proteasas/química , Relación Estructura-Actividad
8.
Bioorg Med Chem Lett ; 23(13): 3709-12, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23727045

RESUMEN

The design, synthesis, and in vitro evaluation of the first macrocyclic inhibitor of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus are reported. The in vitro inhibitory activity (50% effective concentration) of the macrocyclic inhibitor toward enterovirus 3C protease (CVB3 Nancy strain), and coronavirus (SARS-CoV) and norovirus 3C-like proteases, was determined to be 1.8, 15.5 and 5.1 µM, respectively.


Asunto(s)
Coronavirus/enzimología , Compuestos Macrocíclicos/farmacología , Norovirus/enzimología , Péptido Hidrolasas/metabolismo , Picornaviridae/enzimología , Inhibidores de Proteasas/farmacología , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Modelos Moleculares , Conformación Molecular , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Relación Estructura-Actividad
9.
Bioorg Med Chem Lett ; 22(10): 3480-4, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22513282

RESUMEN

During the last decade, noroviruses have gained media attention as the cause of large scale outbreaks of gastroenteritis on cruise ships, dormitories, nursing homes, etc. Although noroviruses do not multiply in food or water, they can cause large outbreaks because approximately 10-100 virions are sufficient to cause illness in a healthy adult. Recently, it was shown that the activity of acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1) enzyme may be important in norovirus infection. In search of anti-noroviral agents based on the inhibition of ACAT1, we synthesized and evaluated the inhibitory activities of a class of pyranobenzopyrone molecules containing amino, pyridine, substituted quinolines, or 7,8-benzoquinoline nucleus. Three of the sixteen evaluated compounds possess ED(50) values in the low micrometer range. 2-Quinolylmethyl derivative 3A and 4-quinolylmethyl derivative 4A showed ED(50) values of 3.4 and 2.4 µM and TD(50) values of >200 and 96.4 µM, respectively. The identified active compounds are suitable for further modification for the development of anti-norovirus agents.


Asunto(s)
Antivirales/farmacología , Norovirus/efectos de los fármacos , Pironas/farmacología , Acetil-CoA C-Acetiltransferasa/antagonistas & inhibidores , Antivirales/síntesis química , Pironas/síntesis química
10.
J Am Chem Soc ; 132(49): 17635-41, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21090722

RESUMEN

Cycloiptycenes are elusive and synthetically challenging molecules. We report the first synthesis of two substituted cyclododeciptycene tetraquinones via a sequence of intermolecular and intramolecular Diels-Alder reactions from cis,cis-heptiptycene tetraquinone 2 and substituted 7,16-dihydro-7,16-(o-benzeno)heptacenes 3. Heptiptycene tetraquinone 2 was made from triptycene bisquinone 4 and 1,4-dimethoxyanthracene in three steps, and 6,8,15,17-tetramethoxy-7,16-dihydro-7,16-(o-benzeno)heptacene (3a) was synthesized from triptycene bisquinone 4 and 1,4-dihydro-2,3-benzoxathiin-3-oxide in four steps. The structure of a cyclododeciptycene, 1a, was determined by a single-crystal X-ray analysis. The synthetic sequence is general and should allow the incorporation of various alkoxy and acetoxy substituents appended to the cycloiptycene framework.

11.
Methods Mol Biol ; 2103: 175-187, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31879925

RESUMEN

Mycobacterium tuberculosis (Mtb) is a bacterial pathogen that causes a potentially serious infectious disease called tuberculosis (TB). Cyclohexapeptide wollamides A and B were recently isolated from Streptomyces nov. sp. (MST-115088) and subsequently reported to show excellent in vitro antituberculosis activity with minimum inhibitory concentration (MIC) of 1.56 µg/mL against Mtb (H37Rv) and favorable selectivity profile. This chapter describes the detailed synthesis of antitubercular wollamide analogs using solid-phase synthesis of linear hexapeptide precursors, followed by solution-phase HBTU-mediated macrocyclization and global side chain deprotection.


Asunto(s)
Antituberculosos/síntesis química , Péptidos Cíclicos/síntesis química , Técnicas de Síntesis en Fase Sólida/métodos , Antituberculosos/química , Antituberculosos/aislamiento & purificación , Antituberculosos/farmacología , Ciclización , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Péptidos Cíclicos/química , Péptidos Cíclicos/aislamiento & purificación , Péptidos Cíclicos/farmacología
12.
RSC Adv ; 9(4): 1759-1771, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35516148

RESUMEN

The first total synthesis of diazaquinomycins H (1) and J (2), which are promising anti-tuberculosis natural product leads, has been achieved via selective amidation of diamine 6 with Meldrum's acid derivatives, subsequent EDC coupling with 3-oxobutanoic acid, followed by double Knorr cyclization in the presence of triisopropylsilane (TIPS). We found that the addition of TIPS was crucial to obtain pure diazaquinomycins H and J, while preventing isomerization of the terminal iso-branched tail in sulfuric acid. Our developed synthesis provided diazaquinomycins H (1) and J (2) in 8 steps from commercially available starting materials in 25% and 21% overall yields, respectively. The spectroscopic data of synthetic diazaquinomycins H (1) and J (2) agreed very favorably with those of reported natural products.

13.
ACS Infect Dis ; 5(2): 208-217, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30501172

RESUMEN

Clostridium difficile infection (CDI) is an antibiotic-induced microbiota shift disease of the large bowel. While there is a need for narrow-spectrum CDI antibiotics, it is unclear which cellular proteins are appropriate drug targets to specifically inhibit C. difficile. We evaluated the enoyl-acyl carrier protein (ACP) reductase II (FabK), which catalyzes the final step of bacterial fatty acid biosynthesis. Bioinformatics showed that C. difficile uses FabK as its sole enoyl-ACP reductase, unlike several major microbiota species. The essentiality of fabK for C. difficile growth was confirmed by failure to delete this gene using ClosTron mutagenesis and by growth inhibition upon gene silencing with CRISPR interference antisense to fabK transcription or by blocking protein translation. Inhibition of C. difficile's FASII pathway could not be circumvented by supply of exogenous fatty acids, either during fabK's gene silencing or upon inhibition of the enzyme with a phenylimidazole-derived inhibitor (1). The inability of fatty acids to bypass FASII inhibition is likely due to the function of the transcriptional repressor FapR. Inhibition of FabK also inhibited spore formation, reflecting the enzyme's role in de novo fatty acid biosynthesis for the formation of spore membrane lipids. Compound 1 did not inhibit growth of key microbiota species. These findings suggest that C. difficile FabK is a druggable target for discovering narrow-spectrum anti- C. difficile drugs that treat CDI but avoid collateral damage to the gut microbiota.


Asunto(s)
Antibacterianos/farmacología , Clostridioides difficile/efectos de los fármacos , Enoil-ACP Reductasa (NADH)/antagonistas & inhibidores , Vías Biosintéticas , Sistemas CRISPR-Cas , Clostridioides difficile/enzimología , Clostridioides difficile/genética , Cristalografía por Rayos X , ADN sin Sentido , Enoil-ACP Reductasa (NADH)/genética , Ácidos Grasos/biosíntesis , Silenciador del Gen
14.
ACS Chem Biol ; 14(7): 1528-1535, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31184849

RESUMEN

Clostridioides difficile infection (CDI) is a leading cause of significant morbidity, mortality, and healthcare-related costs in the United States. After standard therapy, recurrence rates remain high, and multiple recurrences are not uncommon. Causes include treatments employing broad-spectrum agents that disrupt the normal host microbiota, as well as treatment-resistant spore formation by C. difficile. Thus, novel druggable anti-C. difficile targets that promote narrow-spectrum eradication and inhibition of sporulation are desired. As a critical rate-limiting step within the FAS-II bacterial fatty acid synthesis pathway, which supplies precursory component phospholipids found in bacterial cytoplasmic and spore-mediated membranes, enoyl-acyl carrier protein (ACP) reductase II (FabK) represents such a target. FabK is essential in C. difficile (CdFabK) and is structurally and mechanistically distinct from other isozymes found in gut microbiota species, making CdFabK an attractive narrow-spectrum target. We report here the kinetic evaluation of CdFabK, the biochemical activity of a series of phenylimidazole analogues, and microbiological data suggesting these compounds' selective antibacterial activity against C. difficile versus several other prominent gut organisms. The compounds display promising, selective, low micromolar CdFabK inhibitory activity without significantly affecting the growth of other gut organisms, and the series prototype (1b) is shown to be competitive for the CdFabK cofactor and uncompetitive for the substrate. A series analogue (1g) shows maintained inhibitory activity while also possessing increased solubility. These findings represent the basis for future drug discovery efforts by characterizing the CdFabK enzyme while demonstrating its druggability and potential role as a narrow-spectrum antidifficile target.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/enzimología , Enoil-ACP Reductasa (NADH)/antagonistas & inhibidores , Clostridioides difficile/química , Clostridioides difficile/metabolismo , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/microbiología , Enoil-ACP Reductasa (NADH)/química , Enoil-ACP Reductasa (NADH)/metabolismo , Humanos , Imidazoles/química , Imidazoles/farmacología , Simulación del Acoplamiento Molecular , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad
15.
ACS Omega ; 3(12): 18343-18360, 2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-30613820

RESUMEN

A series of novel chalcone and thiol-Michael addition analogues was synthesized and tested against Mycobacterium tuberculosis and other clinically significant bacterial pathogens. Previously reported chalcone-like antibacterials (1a-c and 2) were used as a training set to generate a pharmacophore model. The chalcone derivative hit compound 3 was subsequently identified through a pharmacophore-based virtual screen of the Specs library of >200 000 compounds. Among the newly synthesized chalcones and thiol-Michael addition analogues, chalcones 6r and 6s were active (minimum inhibitory concentrations (MICs) = 1.56-6.25 µg/mL) against Gram-positive pathogens Bacillus anthracis and Staphylococcus aureus [methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA)]. The chalcone thiol-Michael addition derivatives 7j-m showed good to excellent antibacterial activities (MICs = 0.78-6.25 µg/mL) against Enterococcus faecalis, B. anthracis, and S. aureus. Interestingly, the amine-Michael addition analogue 12a showed promising anti-MRSA activity (MIC = 1.56 µg/mL) with a selectivity index of 14 toward mammalian Vero cells. In addition, evaluation of selected compounds against biofilm and planktonic S. aureus (MSSA and MRSA) revealed that 12a exhibited bactericidal activities in these assays, which was overall superior to vancomycin. These properties may result from the compounds dissipating the proton motive force of bacterial membranes.

16.
Expert Opin Drug Discov ; 11(6): 529-41, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27108716

RESUMEN

INTRODUCTION: Rapid transmission of norovirus often occurs due to its low infectious dosage, high genetic diversity and its short incubation time. The viruses cause acute gastroenteritis and may lead to death. Presently, no effective vaccine or selective drugs accepted by the United States Food and Drug Administration (FDA) are available for the treatment of norovirus. Advances in the development of norovirus replicon cell lines, GII.4-Sydney HuNoV strain human B cells, and murine and gnotobiotic pig norovirus models have facilitated the discovery of effective small molecule inhibitors in vitro and in vivo. AREAS COVERED: This review gives a brief discussion of the biology and replication of norovirus before highlighting the discovery of anti-norovirus molecules. The article coverage includes: an overview of the current state of norovirus drug discovery, the targeting of the norovirus life cycle, the inhibition of structural and nonstructural proteins of norovirus such as proteases and polymerase, and the blockage of virus entry into host cells. Finally, anti-norovirus drugs in the clinical development stage are described. EXPERT OPINION: The current approach for the counteraction of norovirus focuses on the inhibition of viral RNA polymerase, norovirus 3C-like protease and the structural proteins VP1 as well as the blockade of norovirus entry. Broad-spectrum anti-norovirus molecules, based on the inhibition of 3C-like protease, have been developed. Other host factors and ways to overcome the development of resistance through mutation are also being examined. A dual approach in targeting viral and host factors may lead to an effective counteraction of norovirus infection. Current successes in developing norovirus replicon harboring cells and norovirus infected human cells, as well as murine norovirus models and other animal models such as piglets have facilitated the discovery of effective drugs and helped our understanding of its mechanism of action.


Asunto(s)
Antivirales/farmacología , Infecciones por Caliciviridae/tratamiento farmacológico , Diseño de Fármacos , Animales , Infecciones por Caliciviridae/transmisión , Infecciones por Caliciviridae/virología , Modelos Animales de Enfermedad , Descubrimiento de Drogas/métodos , Farmacorresistencia Viral , Gastroenteritis/tratamiento farmacológico , Gastroenteritis/virología , Humanos , Norovirus/efectos de los fármacos , Norovirus/aislamiento & purificación
17.
Biosens Bioelectron ; 56: 129-36, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24480132

RESUMEN

The proteolytic activity of a cancer-related enzyme cathepsin B is measured with alternating current voltammetry (ACV) using ferrocene (Fc) labeled tetrapeptides attached to nanoelectrode arrays (NEAs) fabricated with vertically aligned carbon nanofibers (VACNFs). This combination enables the use of high AC frequencies (~1kHz) with enhanced electrochemical signals. The specific proteolysis of the Fc-peptide by cathepsin B produces decay in the ACV peak current versus the reaction time. The exponential component of the raw data can be extracted and defined as the "extracted proteolytic signal" which allows consistent quantitative analyses using a heterogeneous Michaelis-Menten model. A "specificity constant" kcat/KM = (3.68 ± 0.50) × 10(4)M(-1)s(-1) for purified cathepsin B was obtained. The detections of cathepsin B activity in different concentrations of whole lysate of human breast tissue, tissue lysate spiked with varied concentrations of cathepsin B, and the tissue lysate after immunoprecipitation showed that there is ~13.4 nM higher cathepsin B concentration in 29.1 µg mL(-1) of whole tissue lysate than the immunoprecipitated sample. The well-defined regular VACNF NEAs by e-beam lithography show a much faster kinetics for cathepsin B proteolysis with kcat/KM = 9.2 × 10(4)M(-1)s(-1). These results illustrate the potential of this technique as a portable multiplex electronic system for cancer diagnosis by rapid protease profiling of serum or blood samples.


Asunto(s)
Carbono/química , Catepsina B/metabolismo , Técnicas Electroquímicas/instrumentación , Pruebas de Enzimas/instrumentación , Nanofibras/química , Técnicas Biosensibles/instrumentación , Mama/enzimología , Catepsina B/análisis , Diseño de Equipo , Femenino , Humanos , Cinética
18.
Synthesis (Stuttg) ; 46(16): 2179-2190, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25177061

RESUMEN

Various condensation and ring-closing reactions were used for the syntheses of 3-[(alkylamino)methylene]-6-methylpyri-dine-2,4(1H,3H)-diones, bicyclic pyridinones, and tricyclic morpholinopyrones. For instance, 3-[(dialkylamino)methylene]-6-methylpyridine-2,4(1H,3H)-diones were synthesized from the condensation of dialkylamines and 3-formyl-4-hydroxy-6-methylpyridin-2(1H)-one. 3-Formyl-4-hydroxy-6-methylpyridin-2(1H)-one, derived from 3-formyl-4-hydroxy-6-methylpyridin-2(1H)-one, was used to construct a number of bicyclic pyridinones via a one-pot Knoevenagal and intramolecular lactonization reaction. Tricyclic morpholinopyrones were assembled from a dialkylation reaction involving a dinucleophile, 3-amino-4-hydroxy-6-methyl-2H-pyran-2-one, and a dielectrophile, trans-3,6-dibromocyclohexene. Depending on the reaction conditions, isomers of the tricyclic molecules can be selectively produced, and their chemical structures were unequivocally determined using single-crystal X-ray analyses and 2D COSY spectroscopy. The fluorescently active bicyclic pyridinone compounds show longer absorption (368-430 nm; maximum) and emission wavelengths (450-467 nm) than those of 7-amino-4-methylcoumarin (AMC; λabs,max = 350 nm; λem = 430 nm) suggesting these molecules, such as 3-(2-aminoacetyl)-7-methyl-2H-pyrano[3,2-c]pyridine-2,5(6H)-dione, can be employed as fluorescence activity based probes for tracing biological pathways.

19.
J Phys Chem C Nanomater Interfaces ; 117(8): 4268-4277, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23814632

RESUMEN

We report an electrochemical method for measuring the activity of proteases using nanoelectrode arrays (NEAs) fabricated with vertically aligned carbon nanofibers (VACNFs). The VACNFs of ~150 nm in diameter and 3 to 5 µm in length were grown on conductive substrates and encapsulated in SiO2 matrix. After polishing and plasma etching, controlled VACNF tips are exposed to form an embedded VACNF NEA. Two types of tetrapeptides specific to cancer-mediated proteases legumain and cathepsin B are covalently attached to the exposed VACNF tip, with a ferrocene (Fc) moiety linked at the distal end. The redox signal of Fc can be measured with AC voltammetry (ACV) at ~1 kHz frequency on VACNF NEAs, showing distinct properties from macroscopic glassy carbon electrodes due to VACNF's unique interior structure. The enhanced ACV properties enable the kinetic measurements of proteolytic cleavage of the surface-attached tetrapeptides by proteases, further validated with a fluorescence assay. The data can be analyzed with a heterogeneous Michaelis-Menten model, giving "specificity constant" kcat /Km as (4.3 ± 0.8) × 104 M-1s-1 for cathepsin B and (1.13 ± 0.38) × 104 M-1s-1 for legumain. This method could be developed as portable multiplex electronic techniques for rapid cancer diagnosis and treatment monitoring.

20.
Eur J Med Chem ; 50: 311-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22365411

RESUMEN

Recently our group has demonstrated that cellular triglyceride (TG) levels play an important role in rotavirus replication. In this study, we further examined the roles of the key enzymes for TG synthesis (lipogenesis) in the replication of rotaviruses by using inhibitors of fatty acid synthase, long chain fatty acid acyl-CoA synthetase (ACSL), and diacylglycerol acyltransferase and acyl-CoA:cholesterol acyltransferase in association with lipid droplets of which TG is a major component. Triacsin C, a natural ACSL inhibitor from Streptomyces aureofaciens, was found to be highly effective against rotavirus replication. Thus, novel triacsin C analogs were synthesized and evaluated for their efficacies against the replication of rotaviruses in cells. Many of the analogs significantly reduced rotavirus replication, and one analog (1e) was highly effective at a nanomolar concentration range (ED(50) 0.1µM) with a high therapeutic index in cell culture. Our results suggest a crucial role of lipid metabolism in rotavirus replication, and triacsin C and/or its analogs as potential therapeutic options for rotavirus infections.


Asunto(s)
Antivirales/farmacología , Infecciones por Rotavirus/tratamiento farmacológico , Rotavirus/efectos de los fármacos , Triazenos/química , Triazenos/farmacología , Replicación Viral/efectos de los fármacos , Animales , Antivirales/síntesis química , Células Cultivadas , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Infecciones por Rotavirus/virología , Streptomyces/química , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA