Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genet Med ; 22(8): 1338-1347, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32424177

RESUMEN

PURPOSE: Genitopatellar syndrome and Say-Barber-Biesecker-Young-Simpson syndrome are caused by variants in the KAT6B gene and are part of a broad clinical spectrum called KAT6B disorders, whose variable expressivity is increasingly being recognized. METHODS: We herein present the phenotypes of 32 previously unreported individuals with a molecularly confirmed diagnosis of a KAT6B disorder, report 24 new pathogenic KAT6B variants, and review phenotypic information available on all published individuals with this condition. We also suggest a classification of clinical subtypes within the KAT6B disorder spectrum. RESULTS: We demonstrate that cerebral anomalies, optic nerve hypoplasia, neurobehavioral difficulties, and distal limb anomalies other than long thumbs and great toes, such as polydactyly, are more frequently observed than initially reported. Intestinal malrotation and its serious consequences can be present in affected individuals. Additionally, we identified four children with Pierre Robin sequence, four individuals who had increased nuchal translucency/cystic hygroma prenatally, and two fetuses with severe renal anomalies leading to renal failure. We also report an individual in which a pathogenic variant was inherited from a mildly affected parent. CONCLUSION: Our work provides a comprehensive review and expansion of the genotypic and phenotypic spectrum of KAT6B disorders that will assist clinicians in the assessment, counseling, and management of affected individuals.


Asunto(s)
Blefarofimosis , Discapacidad Intelectual , Blefarofimosis/genética , Exones , Histona Acetiltransferasas/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Mutación
2.
Am J Hum Genet ; 98(2): 373-81, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26833328

RESUMEN

Mutations in more than a hundred genes have been reported to cause X-linked recessive intellectual disability (ID) mainly in males. In contrast, the number of identified X-linked genes in which de novo mutations specifically cause ID in females is limited. Here, we report 17 females with de novo loss-of-function mutations in USP9X, encoding a highly conserved deubiquitinating enzyme. The females in our study have a specific phenotype that includes ID/developmental delay (DD), characteristic facial features, short stature, and distinct congenital malformations comprising choanal atresia, anal abnormalities, post-axial polydactyly, heart defects, hypomastia, cleft palate/bifid uvula, progressive scoliosis, and structural brain abnormalities. Four females from our cohort were identified by targeted genetic testing because their phenotype was suggestive for USP9X mutations. In several females, pigment changes along Blaschko lines and body asymmetry were observed, which is probably related to differential (escape from) X-inactivation between tissues. Expression studies on both mRNA and protein level in affected-female-derived fibroblasts showed significant reduction of USP9X level, confirming the loss-of-function effect of the identified mutations. Given that some features of affected females are also reported in known ciliopathy syndromes, we examined the role of USP9X in the primary cilium and found that endogenous USP9X localizes along the length of the ciliary axoneme, indicating that its loss of function could indeed disrupt cilium-regulated processes. Absence of dysregulated ciliary parameters in affected female-derived fibroblasts, however, points toward spatiotemporal specificity of ciliary USP9X (dys-)function.


Asunto(s)
Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Mutación , Ubiquitina Tiolesterasa/genética , Adolescente , Secuencia de Bases , Niño , Preescolar , Atresia de las Coanas/diagnóstico , Atresia de las Coanas/genética , Discapacidades del Desarrollo/diagnóstico , Femenino , Genes Ligados a X , Pruebas Genéticas , Humanos , Discapacidad Intelectual/diagnóstico , Datos de Secuencia Molecular , Fenotipo , Ubiquitina Tiolesterasa/metabolismo , Inactivación del Cromosoma X , Adulto Joven
3.
PLoS Genet ; 10(3): e1004258, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24676022

RESUMEN

Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) is a rare disorder of enteric smooth muscle function affecting the intestine and bladder. Patients with this severe phenotype are dependent on total parenteral nutrition and urinary catheterization. The cause of this syndrome has remained a mystery since Berdon's initial description in 1976. No genes have been clearly linked to MMIHS. We used whole-exome sequencing for gene discovery followed by targeted Sanger sequencing in a cohort of patients with MMIHS and intestinal pseudo-obstruction. We identified heterozygous ACTG2 missense variants in 15 unrelated subjects, ten being apparent de novo mutations. Ten unique variants were detected, of which six affected CpG dinucleotides and resulted in missense mutations at arginine residues, perhaps related to biased usage of CpG containing codons within actin genes. We also found some of the same heterozygous mutations that we observed as apparent de novo mutations in MMIHS segregating in families with intestinal pseudo-obstruction, suggesting that ACTG2 is responsible for a spectrum of smooth muscle disease. ACTG2 encodes γ2 enteric actin and is the first gene to be clearly associated with MMIHS, suggesting an important role for contractile proteins in enteric smooth muscle disease.


Asunto(s)
Anomalías Múltiples/genética , Actinas/genética , Colon/anomalías , Heterocigoto , Seudoobstrucción Intestinal/genética , Mutación/genética , Vejiga Urinaria/anomalías , Anomalías Múltiples/patología , Adolescente , Adulto , Niño , Preescolar , Colon/patología , Exoma , Femenino , Humanos , Seudoobstrucción Intestinal/patología , Masculino , Músculo Liso/metabolismo , Vejiga Urinaria/patología
4.
Hum Mutat ; 35(7): 779-90, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24692096

RESUMEN

Mutations affecting skeletal muscle isoforms of the tropomyosin genes may cause nemaline myopathy, cap myopathy, core-rod myopathy, congenital fiber-type disproportion, distal arthrogryposes, and Escobar syndrome. We correlate the clinical picture of these diseases with novel (19) and previously reported (31) mutations of the TPM2 and TPM3 genes. Included are altogether 93 families: 53 with TPM2 mutations and 40 with TPM3 mutations. Thirty distinct pathogenic variants of TPM2 and 20 of TPM3 have been published or listed in the Leiden Open Variant Database (http://www.dmd.nl/). Most are heterozygous changes associated with autosomal-dominant disease. Patients with TPM2 mutations tended to present with milder symptoms than those with TPM3 mutations, DA being present only in the TPM2 group. Previous studies have shown that five of the mutations in TPM2 and one in TPM3 cause increased Ca(2+) sensitivity resulting in a hypercontractile molecular phenotype. Patients with hypercontractile phenotype more often had contractures of the limb joints (18/19) and jaw (6/19) than those with nonhypercontractile ones (2/22 and 1/22), whereas patients with the non-hypercontractile molecular phenotype more often (19/22) had axial contractures than the hypercontractile group (7/19). Our in silico predictions show that most mutations affect tropomyosin-actin association or tropomyosin head-to-tail binding.


Asunto(s)
Estudios de Asociación Genética , Enfermedades Musculares/congénito , Enfermedades Musculares/genética , Mutación , Tropomiosina/genética , Actinas/metabolismo , Adolescente , Adulto , Secuencia de Aminoácidos , Niño , Preescolar , Bases de Datos Genéticas , Femenino , Humanos , Lactante , Masculino , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/diagnóstico , Fenotipo , Fosforilación , Unión Proteica , Alineación de Secuencia , Tropomiosina/química , Tropomiosina/metabolismo , Adulto Joven
5.
BMC Med Genet ; 15: 128, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25472632

RESUMEN

BACKGROUND: Point mutations or genomic deletions of FOXF1 result in a lethal developmental lung disease Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins. However, the clinical consequences of the constitutively increased dosage of FOXF1 are unknown. METHODS: Copy-number variations and their parental origin were identified using a combination of array CGH, long-range PCR, DNA sequencing, and microsatellite analyses. Minisatellite sequences across different species were compared using a gready clustering algorithm and genome-wide analysis of the distribution of minisatellite sequences was performed using R statistical software. RESULTS: We report four unrelated families with 16q24.1 duplications encompassing entire FOXF1. In a 4-year-old boy with speech delay and a café-au-lait macule, we identified an ~15 kb 16q24.1 duplication inherited from the reportedly healthy father, in addition to a de novo ~1.09 Mb mosaic 17q11.2 NF1 deletion. In a 13-year-old patient with autism and mood disorder, we found an ~0.3 Mb duplication harboring FOXF1 and an ~0.5 Mb 16q23.3 duplication, both inherited from the father with bipolar disorder. In a 47-year old patient with pyloric stenosis, mesenterium commune, and aplasia of the appendix, we identified an ~0.4 Mb duplication in 16q24.1 encompassing 16 genes including FOXF1. The patient transmitted the duplication to her daughter, who presented with similar symptoms. In a fourth patient with speech and motor delay, and borderline intellectual disability, we identified an ~1.7 Mb FOXF1 duplication adjacent to a large minisatellite. This duplication has a complex structure and arose de novo on the maternal chromosome, likely as a result of a DNA replication error initiated by the adjacent large tandem repeat. Using bioinformatic and array CGH analyses of the minisatellite, we found a large variation of its size in several different species and individuals, demonstrating both its evolutionarily instability and population polymorphism. CONCLUSIONS: Our data indicate that constitutional duplication of FOXF1 in humans is not associated with any pediatric lung abnormalities. We propose that patients with gut malrotation, pyloric or duodenal stenosis, and gall bladder agenesis should be tested for FOXF1 alterations. We suggest that instability of minisatellites greater than 1 kb can lead to structural variation due to DNA replication errors.


Asunto(s)
Anomalías Múltiples/genética , Cromosomas Humanos Par 16/genética , Factores de Transcripción Forkhead/genética , Duplicación de Gen , Anomalías Múltiples/patología , Adolescente , Animales , Preescolar , Evolución Molecular , Femenino , Dosificación de Gen , Humanos , Masculino , Persona de Mediana Edad , Repeticiones de Minisatélite , Linaje
6.
Eur J Pediatr ; 173(12): 1741-4, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25388409
7.
J Neurosci ; 32(31): 10574-86, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22855807

RESUMEN

The tet-off system has been widely used to create transgenic models of neurological disorders including Alzheimer's, Parkinson's, Huntington's, and prion disease. The utility of this system lies in the assumption that the tetracycline transactivator (TTA) acts as an inert control element and does not contribute to phenotypes under study. Here we report that neuronal expression of TTA can affect hippocampal cytoarchitecture and behavior in a strain-dependent manner. While studying neurodegeneration in two tet-off Alzheimer's disease models, we unexpectedly discovered neuronal loss within the dentate gyrus of single transgenic TTA controls. Granule neurons appeared most sensitive to TTA exposure during postnatal development, and doxycycline treatment during this period was neuroprotective. TTA-induced degeneration could be rescued by moving the transgene onto a congenic C57BL/6J background and recurred on reintroduction of either CBA or C3H/He backgrounds. Quantitative trait analysis of B6C3 F2 TTA mice identified a region on Chromosome 14 that contains a major modifier of the neurodegenerative phenotype. Although B6 mice were resistant to degeneration, they were not ideal for cognitive testing. F1 offspring of TTA C57BL/6J and 129X1/SvJ, FVB/NJ, or DBA/1J showed improved spatial learning, but TTA expression caused subtle differences in contextual fear conditioning on two of these backgrounds, indicating that strain and genotype can interact independently under different behavioral settings. All model systems have limitations that should be recognized and mitigated where possible; our findings stress the importance of mapping the effects caused by TTA alone when working with tet-off models.


Asunto(s)
Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/metabolismo , Tetraciclina/metabolismo , Transactivadores/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Análisis de Varianza , Animales , Antibacterianos/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Mapeo Cromosómico , Condicionamiento Psicológico/fisiología , Giro Dentado/metabolismo , Giro Dentado/patología , Modelos Animales de Enfermedad , Doxiciclina/farmacología , Conducta Exploratoria/fisiología , Miedo/fisiología , Femenino , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos Mentales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Mutación/genética , Síndromes de Neurotoxicidad/patología , Especificidad de la Especie , Proteínas tau/genética
8.
Neuroimage ; 83: 962-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23891883

RESUMEN

The capacity of sex to modify behavior in health and illness may stem from biological differences between males and females. One such difference--fundamental to the biological definition of sex--is inequality of X chromosome dosage. Studies of Turner Syndrome (TS) suggest that X-monosomy profoundly alters mammalian brain development. However, use of TS as a model for X chromosome haploinsufficiency is complicated by karyotypic mosaicism, background genetic heterogeneity and ovarian dysgenesis. Therefore, to better isolate X chromosome effects on brain development and identify how these overlap with normative sex differences, we used whole-brain structural imaging to study X-monosomic mice (free of mosaicism and ovarian dysgenesis) alongside their karyotypical normal male and female littermates. We demonstrate that murine X-monosomy (XO) causes (i) accentuation of XX vs XY differences in a set of sexually dimorphic structures including classical foci of sex-hormone action, such as the bed nucleus of the stria terminal and medial amygdala, (ii) parietal and striatal abnormalities that recapitulate those reported TS, and (iii) abnormal development of brain systems relevant for domains of altered cognition and emotion in both murine and human X-monosomy. Our findings suggest an unexpected role for X-linked genes in shaping sexually dimorphic brain development, and an evolutionarily conserved influence of X-linked genes on both cortical and subcortical development in mammals. Furthermore, our murine findings highlight the bed nucleus of the stria terminalis and periaqueductal gray matter as novel neuroanatomical candidates for closer study in TS. Integration of these data with existing genomic knowledge generates a set of novel, testable hypotheses regarding candidate mechanisms for each observed pattern of anatomical variation across XO, XX and XY groups.


Asunto(s)
Encéfalo/anatomía & histología , Caracteres Sexuales , Síndrome de Turner/patología , Animales , Modelos Animales de Enfermedad , Femenino , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Mutantes
9.
Am J Med Genet A ; 161A(12): 2953-63, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24123848

RESUMEN

Structural rearrangements of chromosome 19p are rare, and their resulting phenotypic consequences are not well defined. This is the first study to report a cohort of eight patients with subtelomeric 19p13.3 microdeletions, identified using clinical chromosomal microarray analysis (CMA). The deletion sizes ranged from 0.1 to 0.86 Mb. Detailed analysis of the patients' clinical features has enabled us to define a constellation of clinical abnormalities that include growth delay, multiple congenital anomalies, global developmental delay, learning difficulties, and dysmorphic facial features. There are eight genes in the 19p13.3 region that may potentially contribute to the clinical phenotype via haploinsufficiency. Moreover, in silico genomic analysis of 19p13.3 microdeletion breakpoints revealed numerous highly repetitive sequences, suggesting LINEs/SINEs-mediated events in generating these microdeletions. Thus, subtelomeric 19p13.3 appears important for normal embryonic and childhood development. The clinical description of patients with deletions in this genomic interval will assist clinicians to identify and treat individuals with similar deletions.


Asunto(s)
Deleción Cromosómica , Discapacidades del Desarrollo/genética , Estudios de Asociación Genética , Discapacidad Intelectual/genética , Telómero/genética , Adulto , Niño , Puntos de Rotura del Cromosoma , Cromosomas Humanos Par 19/genética , Discapacidades del Desarrollo/patología , Femenino , Humanos , Hibridación Fluorescente in Situ , Lactante , Recién Nacido , Discapacidad Intelectual/patología , Elementos de Nucleótido Esparcido Largo/genética , Masculino , Análisis por Micromatrices
10.
J Med Genet ; 49(11): 681-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23042811

RESUMEN

BACKGROUND: Genomic rearrangements usually involve one of the two chromosome homologues. Homozygous microdeletion/duplication is very rare. The chromosome 22q11.2 region is prone to recurrent rearrangements due to the presence of low-copy repeats. A common 3 Mb microdeletion causes the well-characterised DiGeorge syndrome (DGS). The reciprocal duplication is associated with an extremely variable phenotype, ranging from apparently normal to learning disabilities and multiple congenital anomalies. METHODS AND RESULTS: We describe duplications of the DGS region on both homologues in five patients from three families, detected by array CGH and confirmed by both fluorescence in situ hybridisation and single nucleotide polymorphism arrays. The proband in the first family is homozygous for the common duplication; one maternally inherited and the other a de novo duplication that was generated by nonallelic homologous recombination during spermatogenesis. The 22q11.2 duplications in the four individuals from the other two families are recurrent duplications on both homologues, one inherited from the mother and the other from the father. The phenotype in the patients with a 22q11.2 tetrasomy is similar to the features seen in duplication patients, including cognitive deficits and variable congenital defects. CONCLUSIONS: Our studies that reveal phenotypic variability in patients with four copies of the 22q11.2 genomic segment, demonstrate that both inherited and de novo events can result in the generation of homozygous duplications, and further document how multiple seemingly rare events can occur in a single individual.


Asunto(s)
Duplicación Cromosómica , Cromosomas Humanos Par 10/genética , Síndrome de DiGeorge/genética , Adulto , Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Hibridación Fluorescente in Situ , Lactante , Masculino , Fenotipo , Embarazo
11.
Neurogenetics ; 13(4): 333-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22890812

RESUMEN

Fragile X syndrome, the most common form of X-linked intellectual disability, results from transcriptional silencing of the FMR1 gene. As of yet, the phenotypic consequences of the duplication of FMR1 have not been well characterized. In this report, we characterize the clinical features in two females with duplications involving only the FMR1 gene. In addition, we describe the phenotypes of two subjects with deletion of FMR1 and show that both loss and gain of FMR1 copy number can lead to overlapping neurodevelopmental phenotypes. Our report supports the notion that FMR1 gene dosage is important for normal neurocognitive function.


Asunto(s)
Trastornos del Conocimiento/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Dosificación de Gen , Reordenamiento Génico , Secuencia de Bases , Niño , Trastornos de la Conducta Infantil/genética , Preescolar , Discapacidades del Desarrollo/genética , Femenino , Síndrome del Cromosoma X Frágil/genética , Eliminación de Gen , Humanos , Trastornos del Desarrollo del Lenguaje/genética , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos
12.
PLoS Genet ; 5(12): e1000759, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20011118

RESUMEN

An accurate and precisely annotated genome assembly is a fundamental requirement for functional genomic analysis. Here, the complete DNA sequence and gene annotation of mouse Chromosome 11 was used to test the efficacy of large-scale sequencing for mutation identification. We re-sequenced the 14,000 annotated exons and boundaries from over 900 genes in 41 recessive mutant mouse lines that were isolated in an N-ethyl-N-nitrosourea (ENU) mutation screen targeted to mouse Chromosome 11. Fifty-nine sequence variants were identified in 55 genes from 31 mutant lines. 39% of the lesions lie in coding sequences and create primarily missense mutations. The other 61% lie in noncoding regions, many of them in highly conserved sequences. A lesion in the perinatal lethal line l11Jus13 alters a consensus splice site of nucleoredoxin (Nxn), inserting 10 amino acids into the resulting protein. We conclude that point mutations can be accurately and sensitively recovered by large-scale sequencing, and that conserved noncoding regions should be included for disease mutation identification. Only seven of the candidate genes we report have been previously targeted by mutation in mice or rats, showing that despite ongoing efforts to functionally annotate genes in the mammalian genome, an enormous gap remains between phenotype and function. Our data show that the classical positional mapping approach of disease mutation identification can be extended to large target regions using high-throughput sequencing.


Asunto(s)
Etilnitrosourea/farmacología , Perfilación de la Expresión Génica , Mutación , Proteínas Nucleares/genética , Oxidorreductasas/genética , Animales , Mapeo Cromosómico , Exones , Genes Letales , Ratones , Ratones Mutantes
13.
J Med Genet ; 47(5): 332-41, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19914906

RESUMEN

BACKGROUND: Deletion and the reciprocal duplication in 16p11.2 were recently associated with autism and developmental delay. METHOD: We indentified 27 deletions and 18 duplications of 16p11.2 were identified in 0.6% of all samples submitted for clinical array-CGH (comparative genomic hybridisation) analysis. Detailed molecular and phenotypic characterisations were performed on 17 deletion subjects and ten subjects with the duplication. RESULTS: The most common clinical manifestations in 17 deletion and 10 duplication subjects were speech/language delay and cognitive impairment. Other phenotypes in the deletion patients included motor delay (50%), seizures ( approximately 40%), behavioural problems ( approximately 40%), congenital anomalies ( approximately 30%), and autism ( approximately 20%). The phenotypes among duplication patients included motor delay (6/10), behavioural problems (especially attention deficit hyperactivity disorder (ADHD)) (6/10), congenital anomalies (5/10), and seizures (3/10). Patients with the 16p11.2 deletion had statistically significant macrocephaly (p<0.0017) and 6 of the 10 patients with the duplication had microcephaly. One subject with the deletion was asymptomatic and another with the duplication had a normal cognitive and behavioural phenotype. Genomic analyses revealed additional complexity to the 16p11.2 region with mechanistic implications. The chromosomal rearrangement was de novo in all but 2 of the 10 deletion cases in which parental studies were available. Additionally, 2 de novo cases were apparently mosaic for the deletion in the analysed blood sample. Three de novo and 2 inherited cases were observed in the 5 of 10 duplication patients where data were available. CONCLUSIONS: Recurrent reciprocal 16p11.2 deletion and duplication are characterised by a spectrum of primarily neurocognitive phenotypes that are subject to incomplete penetrance and variable expressivity. The autism and macrocephaly observed with deletion and ADHD and microcephaly seen in duplication patients support a diametric model of autism spectrum and psychotic spectrum behavioural phenotypes in genomic sister disorders.


Asunto(s)
Anomalías Múltiples/genética , Aberraciones Cromosómicas , Cromosomas Humanos Par 16/genética , Discapacidades del Desarrollo/genética , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno Autístico/genética , Niño , Preescolar , Deleción Cromosómica , Hibridación Genómica Comparativa , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Epilepsia/genética , Femenino , Humanos , Lactante , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Masculino , Microcefalia/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Duplicaciones Segmentarias en el Genoma , Adulto Joven
14.
Sci Rep ; 11(1): 11295, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050248

RESUMEN

MBD5-associated neurodevelopmental disorder (MAND) is an autism spectrum disorder (ASD) characterized by intellectual disability, motor delay, speech impairment and behavioral problems; however, the biological role of methyl-CpG-binding domain 5, MBD5, in neurodevelopment and ASD remains largely undefined. Hence, we created neural progenitor cells (NPC) derived from individuals with chromosome 2q23.1 deletion and conducted RNA-seq to identify differentially expressed genes (DEGs) and the biological processes and pathways altered in MAND. Primary skin fibroblasts from three unrelated individuals with MAND and four unrelated controls were converted into induced pluripotent stem cell (iPSC) lines, followed by directed differentiation of iPSC to NPC. Transcriptome analysis of MAND NPC revealed 468 DEGs (q < 0.05), including 20 ASD-associated genes. Comparison of DEGs in MAND with SFARI syndromic autism genes revealed a striking significant overlap in biological processes commonly altered in neurodevelopmental phenotypes, with TGFß, Hippo signaling, DNA replication, and cell cycle among the top enriched pathways. Overall, these transcriptome deviations provide potential connections to the overlapping neurocognitive and neuropsychiatric phenotypes associated with key high-risk ASD genes, including chromatin modifiers and epigenetic modulators, that play significant roles in these disease states.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas de Unión al ADN/genética , Trastornos del Neurodesarrollo/genética , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/genética , Diferenciación Celular/genética , Deleción Cromosómica , Cromosomas Humanos Par 2/genética , Cromosomas Humanos Par 2/metabolismo , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Proteínas de Unión al ADN/metabolismo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Células-Madre Neurales/metabolismo , Trastornos del Neurodesarrollo/metabolismo , Fenotipo , Cultivo Primario de Células , RNA-Seq , Transducción de Señal/genética , Transcriptoma/genética
15.
Hum Mutat ; 31(7): 840-50, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20506139

RESUMEN

We have investigated four approximately 1.6-Mb microduplications and 55 smaller 350-680-kb microduplications at 15q13.2-q13.3 involving the CHRNA7 gene that were detected by clinical microarray analysis. Applying high-resolution array-CGH, we mapped all 118 chromosomal breakpoints of these microduplications. We also sequenced 26 small microduplication breakpoints that were clustering at hotspots of nonallelic homologous recombination (NAHR). All four large microduplications likely arose by NAHR between BP4 and BP5 LCRs, and 54 small microduplications arose by NAHR between two CHRNA7-LCR copies. We identified two classes of approximately 1.6-Mb microduplications and five classes of small microduplications differing in duplication size, and show that they duplicate the entire CHRNA7. We propose that size differences among small microduplications result from preexisting heterogeneity of the common BP4-BP5 inversion. Clinical data and family histories of 11 patients with small microduplications involving CHRNA7 suggest that these microduplications might be associated with developmental delay/mental retardation, muscular hypotonia, and a variety of neuropsychiatric disorders. However, we conclude that these microduplications and their associated potential for increased dosage of the CHRNA7-encoded alpha 7 subunit of nicotinic acetylcholine receptors are of uncertain clinical significance at present. Nevertheless, if they prove to have a pathological effects, their high frequency could make them a common risk factor for many neurobehavioral disorders.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas Humanos Par 15/genética , Duplicación de Gen , Receptores Nicotínicos/genética , Niño , Preescolar , Rotura Cromosómica , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/patología , Hibridación Genómica Comparativa , Discapacidades del Desarrollo/patología , Salud de la Familia , Femenino , Humanos , Discapacidad Intelectual/patología , Masculino , Trastornos Mentales/patología , Datos de Secuencia Molecular , Hipotonía Muscular/patología , Linaje , Análisis de Secuencia de ADN , Receptor Nicotínico de Acetilcolina alfa 7
16.
Hum Mutat ; 31(12): 1326-42, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20848651

RESUMEN

Array comparative genomic hybridization (aCGH) is a powerful tool for the molecular elucidation and diagnosis of disorders resulting from genomic copy-number variation (CNV). However, intragenic deletions or duplications--those including genomic intervals of a size smaller than a gene--have remained beyond the detection limit of most clinical aCGH analyses. Increasing array probe number improves genomic resolution, although higher cost may limit implementation, and enhanced detection of benign CNV can confound clinical interpretation. We designed an array with exonic coverage of selected disease and candidate genes and used it clinically to identify losses or gains throughout the genome involving at least one exon and as small as several hundred base pairs in size. In some patients, the detected copy-number change occurs within a gene known to be causative of the observed clinical phenotype, demonstrating the ability of this array to detect clinically relevant CNVs with subkilobase resolution. In summary, we demonstrate the utility of a custom-designed, exon-targeted oligonucleotide array to detect intragenic copy-number changes in patients with various clinical phenotypes.


Asunto(s)
Hibridación Genómica Comparativa/métodos , Variaciones en el Número de Copia de ADN/genética , Exones/genética , Adolescente , Secuencia de Bases , Niño , Preescolar , Puntos de Rotura del Cromosoma , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Recién Nacido , Masculino , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Eliminación de Secuencia/genética , Adulto Joven
17.
J Hered ; 99(5): 512-7, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18499648

RESUMEN

The murine model for Turner Syndrome is the XO mouse. Unlike their human counterparts, XO mice are typically fertile, and their lack of a second sex chromosome can be transmitted from one generation to the next as an X-linked dominant trait with male lethality. The introduction of an X-linked coat-color marker (tabby) has greatly facilitated the maintenance of this useful mouse strain. XO mice can be produced in large numbers, generation after generation, and rapidly identified on the basis of their sex and coat color. Although this breeding scheme appears to be effective at the phenotype level, its utility has never been conclusively proved at the molecular or cytogenetic levels. Here, we clone and sequence the tabby deletion break point and present a multiplex polymerase chain reaction-based assay for the tabby mutation. By combining the results of this assay with whole-chromosome painting data, we demonstrate that genotype, phenotype, and karyotype all show perfect correlation in the publicly available XO breeding stock. This work lays the foundation for the use of this strain to study Turner Syndrome in particular and the X chromosome in general.


Asunto(s)
Síndrome de Turner/genética , Cromosoma X , Animales , Pintura Cromosómica , Clonación Molecular , Modelos Animales de Enfermedad , Ectodisplasinas/genética , Genotipo , Color del Cabello/genética , Humanos , Cariotipificación , Masculino , Ratones , Mutación , Fenotipo , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
19.
Hear Res ; 214(1-2): 37-44, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16580798

RESUMEN

The shaker2 (sh2) mouse is a murine model for human non-syndromic deafness DFNB3. The mice have abnormal circling behavior suggesting a balanced disorder, and profound deafness. The insertion of a bacterial artificial chromosome (BAC) transgene containing the Myo15a gene into sh2/sh2 zygotes confers hearing capability and abolishes the circling behavior in 1-month-old transgenic animals. In this study, we investigated both the hearing and the morphology of the cochlea in Myo15a mutants carrying this BAC transgene at two, four, or six months of age. The hearing threshold of these mice is normal, with no physiologically significant differences compared to age-matched heterozygous sh2J mice (with or without the BAC transgene). In six-month-old transgenic mice with the BAC, the morphology of hair cells in the apical and upper basal turns of the cochlea is normal. Hair cells of lower basal turn, however, were missing in some mutant animals. This study demonstrates that BAC transgene correction cannot only maintain normal morphology but also confer stable hearing function in Myo15a mutant mice for as long as 6 months. In addition, excess Myo15a expression has no physiologically significant protective or deleterious effects on hearing of normal mice, suggesting that the dosage of Myo15a may not be problematic for gene therapy.


Asunto(s)
Cóclea/fisiología , Sordera/genética , Mutación , Miosinas/genética , Transgenes , Animales , Cóclea/citología , Sordera/patología , Sordera/terapia , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Femenino , Ligamiento Genético , Genotipo , Masculino , Ratones , Ratones Mutantes , Ratones Transgénicos , Microscopía Electrónica , Microscopía Electrónica de Rastreo , Miosinas/metabolismo
20.
Brain Struct Funct ; 220(6): 3581-93, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25146308

RESUMEN

Murine sex chromosome aneuploidies (SCAs) provide powerful models for charting sex chromosome influences on mammalian brain development. Here, building on prior work in X-monosomic (XO) mice, we use spatially non-biased high-resolution imaging to compare and contrast neuroanatomical alterations in XXY and XO mice relative to their wild-type XX and XY littermates. First, we show that carriage of a supernumerary X chromosome in XXY males (1) does not prevent normative volumetric masculinization of the bed nucleus of the stria terminalis (BNST) and medial amygdala, but (2) causes distributed anatomical alterations relative to XY males, which show a statistically unexpected tendency to be co-localized with and reciprocal to XO-XX differences in anatomy. These overlaps identify the lateral septum, BNST, ventral group thalamic nuclei and periaqueductal gray matter as regions with replicable sensitivity to X chromosome dose across two SCAs. We then harness anatomical variation across all four karyotype groups in our study--XO, XX, XY and XXY--to create an agnostic data-driven segmentation of the mouse brain into five distributed clusters which (1) recover fundamental properties of brain organization with high spatial precision, (2) define two previously uncharacterized systems of relative volume excess in females vs. males ("forebrain cholinergic" and "cerebelo-pontine-thalamo-cortical"), and (3) adopt stereotyped spatial motifs which delineate ordered gradients of sex chromosome and gonadal influences on volumetric brain development. Taken together, these data provide a new framework for the study of sexually dimorphic influences on brain development in health and disrupted brain development in SCA.


Asunto(s)
Aneuploidia , Encéfalo/anatomía & histología , Imagen por Resonancia Magnética/métodos , Caracteres Sexuales , Cromosomas Sexuales , Amígdala del Cerebelo/anatomía & histología , Animales , Femenino , Cariotipificación , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroimagen/métodos , Núcleos Septales/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA