Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 186(21): 4475-4495, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37832523

RESUMEN

ADP-ribosylation is a ubiquitous modification of biomolecules, including proteins and nucleic acids, that regulates various cellular functions in all kingdoms of life. The recent emergence of new technologies to study ADP-ribosylation has reshaped our understanding of the molecular mechanisms that govern the establishment, removal, and recognition of this modification, as well as its impact on cellular and organismal function. These advances have also revealed the intricate involvement of ADP-ribosylation in human physiology and pathology and the enormous potential that their manipulation holds for therapy. In this review, we present the state-of-the-art findings covering the work in structural biology, biochemistry, cell biology, and clinical aspects of ADP-ribosylation.


Asunto(s)
ADP-Ribosilación , Humanos , Proteínas/metabolismo , ADN/metabolismo , ARN/metabolismo , Animales , Transducción de Señal , Procesamiento Proteico-Postraduccional , ADP Ribosa Transferasas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
2.
Mol Cell ; 81(12): 2640-2655.e8, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34019811

RESUMEN

ARH3/ADPRHL2 and PARG are the primary enzymes reversing ADP-ribosylation in vertebrates, yet their functions in vivo remain unclear. ARH3 is the only hydrolase able to remove serine-linked mono(ADP-ribose) (MAR) but is much less efficient than PARG against poly(ADP-ribose) (PAR) chains in vitro. Here, by using ARH3-deficient cells, we demonstrate that endogenous MARylation persists on chromatin throughout the cell cycle, including mitosis, and is surprisingly well tolerated. Conversely, persistent PARylation is highly toxic and has distinct physiological effects, in particular on active transcription histone marks such as H3K9ac and H3K27ac. Furthermore, we reveal a synthetic lethal interaction between ARH3 and PARG and identify loss of ARH3 as a mechanism of PARP inhibitor resistance, both of which can be exploited in cancer therapy. Finally, we extend our findings to neurodegeneration, suggesting that patients with inherited ARH3 deficiency suffer from stress-induced pathogenic increase in PARylation that can be mitigated by PARP inhibition.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Poli ADP Ribosilación/fisiología , ADP-Ribosilación , Adenosina Difosfato Ribosa/metabolismo , Línea Celular Tumoral , Cromatina , ADN , Daño del ADN , Fibroblastos/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/fisiología , Células HEK293 , Células HeLa , Humanos , Poli Adenosina Difosfato Ribosa/metabolismo , Cultivo Primario de Células
3.
EMBO J ; 43(14): 2929-2953, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38834853

RESUMEN

PARP-catalysed ADP-ribosylation (ADPr) is important in regulating various cellular pathways. Until recently, PARP-dependent mono-ADP-ribosylation has been poorly understood due to the lack of sensitive detection methods. Here, we utilised an improved antibody to detect mono-ADP-ribosylation. We visualised endogenous interferon (IFN)-induced ADP-ribosylation and show that PARP14 is a major enzyme responsible for this modification. Fittingly, this signalling is reversed by the macrodomain from SARS-CoV-2 (Mac1), providing a possible mechanism by which Mac1 counteracts the activity of antiviral PARPs. Our data also elucidate a major role of PARP9 and its binding partner, the E3 ubiquitin ligase DTX3L, in regulating PARP14 activity through protein-protein interactions and by the hydrolytic activity of PARP9 macrodomain 1. Finally, we also present the first visualisation of ADPr-dependent ubiquitylation in the IFN response. These approaches should further advance our understanding of IFN-induced ADPr and ubiquitin signalling processes and could shed light on how different pathogens avoid such defence pathways.


Asunto(s)
ADP-Ribosilación , Interferones , Poli(ADP-Ribosa) Polimerasas , Ubiquitina-Proteína Ligasas , Humanos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Interferones/metabolismo , Ubiquitinación , Células HEK293 , SARS-CoV-2/metabolismo , Transducción de Señal , COVID-19/virología , COVID-19/metabolismo , Proteínas de Neoplasias
4.
Proc Natl Acad Sci U S A ; 121(25): e2322689121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865276

RESUMEN

Poly(ADP-ribose) polymerase 1 (PARP1) has emerged as a central target for cancer therapies due to the ability of PARP inhibitors to specifically kill tumors deficient for DNA repair by homologous recombination. Upon DNA damage, PARP1 quickly binds to DNA breaks and triggers ADP-ribosylation signaling. ADP-ribosylation is important for the recruitment of various factors to sites of damage, as well as for the timely dissociation of PARP1 from DNA breaks. Indeed, PARP1 becomes trapped at DNA breaks in the presence of PARP inhibitors, a mechanism underlying the cytotoxitiy of these inhibitors. Therefore, any cellular process influencing trapping is thought to impact PARP inhibitor efficiency, potentially leading to acquired resistance in patients treated with these drugs. There are numerous ADP-ribosylation targets after DNA damage, including PARP1 itself as well as histones. While recent findings reported that the automodification of PARP1 promotes its release from the DNA lesions, the potential impact of other ADP-ribosylated proteins on this process remains unknown. Here, we demonstrate that histone ADP-ribosylation is also crucial for the timely dissipation of PARP1 from the lesions, thus contributing to cellular resistance to PARP inhibitors. Considering the crosstalk between ADP-ribosylation and other histone marks, our findings open interesting perspectives for the development of more efficient PARP inhibitor-driven cancer therapies.


Asunto(s)
ADP-Ribosilación , Histonas , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Histonas/metabolismo , Daño del ADN , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética
5.
Cell Mol Life Sci ; 72(23): 4593-612, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26346492

RESUMEN

Since their establishment in the early 1970s, the nuclear changes upon apoptosis induction, such as the condensation of chromatin, disassembly of nuclear scaffold proteins and degradation of DNA, were, and still are, considered as the essential steps and hallmarks of apoptosis. These are the characteristics of the execution phase of apoptotic cell death. In addition, accumulating data clearly show that some nuclear events can lead to the induction of apoptosis. In particular, if DNA lesions resulting from deregulation during the cell cycle or DNA damage induced by chemotherapeutic drugs or viral infection cannot be efficiently eliminated, apoptotic mechanisms, which enable cellular transformation to be avoided, are activated in the nucleus. The functional heterogeneity of the nuclear organization allows the tight regulation of these signaling events that involve the movement of various nuclear proteins to other intracellular compartments (and vice versa) to initiate and govern apoptosis. Here, we discuss how these events are coordinated to execute apoptotic cell death.


Asunto(s)
Apoptosis/fisiología , Caspasas/metabolismo , Núcleo Celular/metabolismo , Animales , Caspasas/genética , Núcleo Celular/genética , Núcleo Celular/fisiología , Cromatina/genética , Cromatina/metabolismo , Daño del ADN , Fragmentación del ADN , Genes p53 , Humanos , Cuerpos de Inclusión Intranucleares/genética , Cuerpos de Inclusión Intranucleares/metabolismo , Leucemia Promielocítica Aguda/genética , Ribosomas/genética , Ribosomas/metabolismo , Transducción de Señal
6.
Cell Rep ; 42(9): 113113, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37676774

RESUMEN

The timely removal of ADP-ribosylation is crucial for efficient DNA repair. However, much remains to be discovered about ADP-ribosylhydrolases. Here, we characterize the physiological role of TARG1, an ADP-ribosylhydrolase that removes aspartate/glutamate-linked ADP-ribosylation. We reveal its function in the DNA damage response and show that the loss of TARG1 sensitizes cells to inhibitors of topoisomerase II, ATR, and PARP. Furthermore, we find a PARP1-mediated synthetic lethal interaction between TARG1 and PARG, driven by the toxic accumulation of ADP-ribosylation, that induces replication stress and genomic instability. Finally, we show that histone PARylation factor 1 (HPF1) deficiency exacerbates the toxicity and genomic instability induced by excessive ADP-ribosylation, suggesting a close crosstalk between components of the serine- and aspartate/glutamate-linked ADP-ribosylation pathways. Altogether, our data identify TARG1 as a potential biomarker for the response of cancer cells to PARP and PARG inhibition and establish that the interplay of TARG1 and PARG protects cells against genomic instability.


Asunto(s)
Ácido Aspártico , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ácido Aspártico/metabolismo , ADP-Ribosilación , Inestabilidad Genómica , Glutamatos/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Nucleares/metabolismo
7.
Sci Adv ; 9(37): eadi2687, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37703374

RESUMEN

PARP14 is a mono-ADP-ribosyl transferase involved in the control of immunity, transcription, and DNA replication stress management. However, little is known about the ADP-ribosylation activity of PARP14, including its substrate specificity or how PARP14-dependent ADP-ribosylation is reversed. We show that PARP14 is a dual-function enzyme with both ADP-ribosyl transferase and hydrolase activity acting on both protein and nucleic acid substrates. In particular, we show that the PARP14 macrodomain 1 is an active ADP-ribosyl hydrolase. We also demonstrate hydrolytic activity for the first macrodomain of PARP9. We reveal that expression of a PARP14 mutant with the inactivated macrodomain 1 results in a marked increase in mono(ADP-ribosyl)ation of proteins in human cells, including PARP14 itself and antiviral PARP13, and displays specific cellular phenotypes. Moreover, we demonstrate that the closely related hydrolytically active macrodomain of SARS2 Nsp3, Mac1, efficiently reverses PARP14 ADP-ribosylation in vitro and in cells, supporting the evolution of viral macrodomains to counteract PARP14-mediated antiviral response.


Asunto(s)
COVID-19 , Transferasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Antivirales , Hidrolasas , Poli(ADP-Ribosa) Polimerasas/genética
8.
DNA Repair (Amst) ; 105: 103144, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34116477

RESUMEN

ADP-ribosylation is a chemical modification of macromolecules found across all domains of life and known to regulate a variety of cellular processes. Notably, it has a well-established role in the DNA damage response. While it was historically known as a post-translational modification of proteins, recent studies have shown that nucleic acids can also serve as substrates of reversible ADP-ribosylation. More precisely, ADP-ribosylation of DNA bases, phosphorylated DNA ends and phosphorylated RNA ends have been reported. We will discuss these three types of modification in details. In a variety of bacterial species, including Mycobacterium tuberculosis, ADP-ribosylation of thymidine has emerged as the mode of action of a toxin-antitoxin system named DarTG, with the resultant products perceived as DNA damage by the cell. On the other hand, mammalian DNA damage sensors PARP1, PARP2 and PARP3 were shown to ADP-ribosylate phosphorylated ends of double-stranded DNA in vitro. Additionally, TRPT1 and several PARP enzymes, including PARP10, can add ADP-ribose to the 5'-phosphorylated end of single-stranded RNA in vitro, representing a novel RNA capping mechanism. Together, these discoveries have led to the emergence of a new and exciting research area, namely DNA and RNA ADP-ribosylation, that is likely to have far-reaching implications for the fields of DNA repair, replication and epigenetics.


Asunto(s)
ADP-Ribosilación , Daño del ADN , Reparación del ADN , ADN/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , ARN/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Humanos , Fosforilación , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo
9.
Cells ; 10(4)2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918601

RESUMEN

Subcellular fractionation approaches remain an indispensable tool among a large number of biochemical methods to facilitate the study of specific intracellular events and characterization of protein functions. During apoptosis, the best-known form of programmed cell death, numerous proteins are translocated into and from the nucleus. Therefore, suitable biochemical techniques for the subcellular fractionation of apoptotic cells are required. However, apoptotic bodies and cell fragments might contaminate the fractions upon using the standard protocols. Here, we compared different nucleus/cytoplasm fractionation methods and selected the best-suited approach for the separation of nuclear and cytoplasmic contents. The described methodology is based on stepwise lysis of cells and washing of the resulting nuclei using non-ionic detergents, such as NP-40. Next, we validated this approach for fractionation of cells treated with various apoptotic stimuli. Finally, we demonstrated that nuclear fraction could be further subdivided into nucleosolic and insoluble subfractions, which is crucial for the isolation and functional studies of various proteins. Altogether, we developed a method for simple and efficient nucleus/cytoplasm fractionation of both normal and apoptotic cells.


Asunto(s)
Apoptosis , Fraccionamiento Celular/métodos , Fracciones Subcelulares/metabolismo , Tampones (Química) , Línea Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Reproducibilidad de los Resultados , Solubilidad
10.
Nat Commun ; 12(1): 5893, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625544

RESUMEN

Despite the involvement of Poly(ADP-ribose) polymerase-1 (PARP1) in many important biological pathways, the target residues of PARP1-mediated ADP-ribosylation remain ambiguous. To explicate the ADP-ribosylation regulome, we analyze human cells depleted for key regulators of PARP1 activity, histone PARylation factor 1 (HPF1) and ADP-ribosylhydrolase 3 (ARH3). Using quantitative proteomics, we characterize 1,596 ADP-ribosylation sites, displaying up to 1000-fold regulation across the investigated knockout cells. We find that HPF1 and ARH3 inversely and homogenously regulate the serine ADP-ribosylome on a proteome-wide scale with consistent adherence to lysine-serine-motifs, suggesting that targeting is independent of HPF1 and ARH3. Notably, we do not detect an HPF1-dependent target residue switch from serine to glutamate/aspartate under the investigated conditions. Our data support the notion that serine ADP-ribosylation mainly exists as mono-ADP-ribosylation in cells, and reveal a remarkable degree of histone co-modification with serine ADP-ribosylation and other post-translational modifications.


Asunto(s)
Adenosina Difosfato/metabolismo , Proteínas Portadoras/metabolismo , Glicósido Hidrolasas/metabolismo , Proteínas Nucleares/metabolismo , ADP-Ribosilación , Proteínas Portadoras/genética , Línea Celular Tumoral , Daño del ADN , Técnicas de Inactivación de Genes , Glicósido Hidrolasas/genética , Histonas/metabolismo , Humanos , Proteínas Nucleares/genética , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Proteómica , Serina/metabolismo
11.
Life Sci Alliance ; 4(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34479984

RESUMEN

ADP ribosylation is a reversible posttranslational modification mediated by poly(ADP-ribose)transferases (e.g., PARP1) and (ADP-ribosyl)hydrolases (e.g., ARH3 and PARG), ensuring synthesis and removal of mono-ADP-ribose or poly-ADP-ribose chains on protein substrates. Dysregulation of ADP ribosylation signaling has been associated with several neurodegenerative diseases, including Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Recessive ADPRHL2/ARH3 mutations are described to cause a stress-induced epileptic ataxia syndrome with developmental delay and axonal neuropathy (CONDSIAS). Here, we present two families with a neuropathy predominant disorder and homozygous mutations in ADPRHL2 We characterized a novel C26F mutation, demonstrating protein instability and reduced protein function. Characterization of the recurrent V335G mutant demonstrated mild loss of expression with retained enzymatic activity. Although the V335G mutation retains its mitochondrial localization, it has altered cytosolic/nuclear localization. This minimally affects basal ADP ribosylation but results in elevated nuclear ADP ribosylation during stress, demonstrating the vital role of ADP ribosylation reversal by ARH3 in DNA damage control.


Asunto(s)
ADP-Ribosilación/genética , Glicósido Hidrolasas/genética , Neuralgia/genética , ADP-Ribosilación/fisiología , Adolescente , Adulto , Alelos , Daño del ADN/fisiología , Reparación del ADN/genética , Familia , Femenino , Glicósido Hidrolasas/metabolismo , Humanos , Masculino , Mutación/genética , Linaje , Poli(ADP-Ribosa) Polimerasa-1 , Poli Adenosina Difosfato Ribosa/metabolismo
12.
Nat Commun ; 12(1): 4055, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34210965

RESUMEN

Poly(ADP-ribose) polymerase 1 (PARP1) and PARP2 are recruited and activated by DNA damage, resulting in ADP-ribosylation at numerous sites, both within PARP1 itself and in other proteins. Several PARP1 and PARP2 inhibitors are currently employed in the clinic or undergoing trials for treatment of various cancers. These drugs act primarily by trapping PARP1 on damaged chromatin, which can lead to cell death, especially in cells with DNA repair defects. Although PARP1 trapping is thought to be caused primarily by the catalytic inhibition of PARP-dependent modification, implying that ADP-ribosylation (ADPr) can counteract trapping, it is not known which exact sites are important for this process. Following recent findings that PARP1- or PARP2-mediated modification is predominantly serine-linked, we demonstrate here that serine ADPr plays a vital role in cellular responses to PARP1/PARP2 inhibitors. Specifically, we identify three serine residues within PARP1 (499, 507, and 519) as key sites whose efficient HPF1-dependent modification counters PARP1 trapping and contributes to inhibitor tolerance. Our data implicate genes that encode serine-specific ADPr regulators, HPF1 and ARH3, as potential PARP1/PARP2 inhibitor therapy biomarkers.


Asunto(s)
Proteínas Portadoras/metabolismo , Daño del ADN , Reparación del ADN , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Serina/metabolismo , ADP-Ribosilación , Línea Celular , Línea Celular Tumoral , Humanos , Neoplasias/enzimología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Procesamiento Proteico-Postraduccional
13.
Oncogene ; 39(1): 1-16, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31462710

RESUMEN

The maintenance of genome stability is essential for the cell as the integrity of genomic information guaranties reproduction of a whole organism. DNA damage occurring in response to different natural and nonnatural stimuli (errors in DNA replication, UV radiation, chemical agents, etc.) is normally detected by special cellular machinery that induces DNA repair. However, further accumulation of genetic lesions drives the activation of cell death to eliminate cells with defective genome. This particular feature is used for targeting fast-proliferating tumor cells during chemo-, radio-, and immunotherapy. Among different cell death modalities induced by DNA damage, apoptosis is the best studied. Nevertheless, nonapoptotic cell death and adaptive stress responses are also activated following genotoxic stress and play a crucial role in the outcome of anticancer therapy. Here, we provide an overview of nonapoptotic cell death pathways induced by DNA damage and discuss their interplay with cellular senescence, mitotic catastrophe, and autophagy.


Asunto(s)
Muerte Celular/genética , Senescencia Celular/genética , Daño del ADN/genética , Neoplasias/genética , Apoptosis/genética , Autofagia/genética , Reparación del ADN/genética , Replicación del ADN/genética , Inestabilidad Genómica/genética , Humanos , Mitosis/genética
14.
Nat Commun ; 11(1): 3391, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636369

RESUMEN

Neurodegeneration is a common hallmark of individuals with hereditary defects in DNA single-strand break repair; a process regulated by poly(ADP-ribose) metabolism. Recently, mutations in the ARH3 (ADPRHL2) hydrolase that removes ADP-ribose from proteins have been associated with neurodegenerative disease. Here, we show that ARH3-mutated patient cells accumulate mono(ADP-ribose) scars on core histones that are a molecular memory of recently repaired DNA single-strand breaks. We demonstrate that the ADP-ribose chromatin scars result in reduced endogenous levels of important chromatin modifications such as H3K9 acetylation, and that ARH3 patient cells exhibit measurable levels of deregulated transcription. Moreover, we show that the mono(ADP-ribose) scars are lost from the chromatin of ARH3-defective cells in the prolonged presence of PARP inhibition, and concomitantly that chromatin acetylation is restored to normal. Collectively, these data indicate that ARH3 can act as an eraser of ADP-ribose chromatin scars at sites of PARP activity during DNA single-strand break repair.


Asunto(s)
Adenosina Difosfato Ribosa/química , Cromatina/química , Roturas del ADN de Cadena Simple , Reparación del ADN , Glicósido Hidrolasas/genética , Mutación , Línea Celular Tumoral , Supervivencia Celular , Fibroblastos , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Histonas/química , Humanos , Enfermedades Neurodegenerativas/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética
15.
Cell Prolif ; 51(5): e12467, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29947118

RESUMEN

Apoptosis is a mode of regulated cell death that is indispensable for the morphogenesis, development and homeostasis of multicellular organisms. Caspases are cysteine-dependent aspartate-specific proteases, which function as initiators and executors of apoptosis. Caspases are cytosolic proteins that can cleave substrates located in different intracellular compartments during apoptosis. Many years ago, the involvement of caspases in the regulation of nuclear changes, a hallmark of apoptosis, was documented. Accumulated data suggest that apoptosis-associated alterations in nucleocytoplasmic transport are also linked to caspase activity. Here, we aim to discuss the current state of knowledge regarding this process. Particular attention will be focused on caspase nuclear entry and their functions in the demolition of the nucleus upon apoptotic stimuli.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Apoptosis/fisiología , Caspasas/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/fisiología , Citoplasma/metabolismo , Citoplasma/fisiología , Animales , Humanos
16.
Elife ; 72018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29480802

RESUMEN

Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that synthesise ADP-ribosylation (ADPr), a reversible modification of proteins that regulates many different cellular processes. Several mammalian PARPs are known to regulate the DNA damage response, but it is not clear which amino acids in proteins are the primary ADPr targets. Previously, we reported that ARH3 reverses the newly discovered type of ADPr (ADPr on serine residues; Ser-ADPr) and developed tools to analyse this modification (Fontana et al., 2017). Here, we show that Ser-ADPr represents the major fraction of ADPr synthesised after DNA damage in mammalian cells and that globally Ser-ADPr is dependent on HPF1, PARP1 and ARH3. In the absence of HPF1, glutamate/aspartate becomes the main target residues for ADPr. Furthermore, we describe a method for site-specific validation of serine ADP-ribosylated substrates in cells. Our study establishes serine as the primary form of ADPr in DNA damage signalling.


Asunto(s)
ADP-Ribosilación , Proteínas Portadoras/metabolismo , Daño del ADN , Glicósido Hidrolasas/metabolismo , Proteínas Nucleares/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Serina/metabolismo , Línea Celular , Humanos
17.
Sci Rep ; 8(1): 12199, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30111833

RESUMEN

The cleavage of nuclear proteins by caspases promotes nuclear breakdown and, therefore, plays a key role in apoptosis execution. However, the detailed molecular mechanisms of these events remain unclear. To get more insights into the mechanisms of nuclear events during apoptosis we set up a rapid fractionation protocol for the separation of the cytoplasmic and nuclear fractions of cells undergoing cisplatin-induced apoptosis. Importantly, nuclear accumulation of effector caspase-3 as well as initiator caspase-2, -8 and -9 was observed using the developed protocol and immunofluorescence microscopy. The detection of caspases and their cleavage products in the nucleus occurred within the same time interval after cisplatin treatment and took place shortly before nuclear fragmentation. The entry of initiator caspases to the nucleus was independent of caspase-3. Given that all three initiator caspases had catalytic activity in the nuclei, our findings indicate that initiator caspases might participate in the proteolysis of nuclear components during apoptosis, promoting its disintegration and apoptotic cell death.


Asunto(s)
Apoptosis/fisiología , Caspasas/metabolismo , Caspasas/fisiología , Caspasa 2/metabolismo , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Fraccionamiento Celular/métodos , Línea Celular Tumoral , Núcleo Celular/metabolismo , Cisplatino/farmacología , Cisteína Endopeptidasas/metabolismo , Citoplasma/metabolismo , Fragmentación del ADN , Células HeLa , Humanos , Células MCF-7 , Proteínas Nucleares/metabolismo , Fracciones Subcelulares/fisiología
18.
Cell Rep ; 24(13): 3488-3502.e5, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30257210

RESUMEN

Serine ADP-ribosylation (Ser-ADPr) is a recently discovered protein modification that is catalyzed by PARP1 and PARP2 when in complex with the eponymous histone PARylation factor 1 (HPF1). In addition to numerous other targets, core histone tails are primary acceptors of Ser-ADPr in the DNA damage response. Here, we show that specific canonical histone marks interfere with Ser-ADPr of neighboring residues and vice versa. Most notably, acetylation, but not methylation of H3K9, is mutually exclusive with ADPr of H3S10 in vitro and in vivo. We also broaden the O-linked ADPr spectrum by providing evidence for tyrosine ADPr on HPF1 and other proteins. Finally, we facilitate wider investigations into the interplay of histone marks with Ser-ADPr by introducing a simple approach for profiling posttranslationally modified peptides. Our findings implicate Ser-ADPr as a dynamic addition to the complex interplay of modifications that shape the histone code.


Asunto(s)
ADP-Ribosilación , Código de Histonas , Histonas/metabolismo , Línea Celular Tumoral , Células HEK293 , Histonas/química , Humanos , Serina/química , Serina/metabolismo
19.
Trends Cell Biol ; 27(5): 322-339, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28188028

RESUMEN

Apoptosis is a crucial program of cell death that controls development and homeostasis of multicellular organisms. The main initiators and executors of this process are the Cysteine-dependent ASPartate proteASES - caspases. A number of regulatory circuits tightly control caspase processing and activity. One of the most important, yet, at the same time still poorly understood control mechanisms of activation of caspases involves their post-translational modifications. The addition and/or removal of chemical groups drastically alters the catalytic activity of caspases or stimulates their nonapoptotic functions. In this review, we will describe and discuss the roles of key caspase modifications such as phosphorylation, ubiquitination, nitrosylation, glutathionylation, SUMOylation, and acetylation in the regulation of apoptotic cell death and cell survival.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Activación Enzimática , Humanos , Fosforilación , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA