Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
2.
Nature ; 580(7804): 478-482, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32322080

RESUMEN

Ultrathin ferroelectric materials could potentially enable low-power perovskite ferroelectric tetragonality logic and nonvolatile memories1,2. As ferroelectric materials are made thinner, however, the ferroelectricity is usually suppressed. Size effects in ferroelectrics have been thoroughly investigated in perovskite oxides-the archetypal ferroelectric system3. Perovskites, however, have so far proved unsuitable for thickness scaling and integration with modern semiconductor processes4. Here we report ferroelectricity in ultrathin doped hafnium oxide (HfO2), a fluorite-structure oxide grown by atomic layer deposition on silicon. We demonstrate the persistence of inversion symmetry breaking and spontaneous, switchable polarization down to a thickness of one nanometre. Our results indicate not only the absence of a ferroelectric critical thickness but also enhanced polar distortions as film thickness is reduced, unlike in perovskite ferroelectrics. This approach to enhancing ferroelectricity in ultrathin layers could provide a route towards polarization-driven memories and ferroelectric-based advanced transistors. This work shifts the search for the fundamental limits of ferroelectricity to simpler transition-metal oxide systems-that is, from perovskite-derived complex oxides to fluorite-structure binary oxides-in which 'reverse' size effects counterintuitively stabilize polar symmetry in the ultrathin regime.

3.
Anal Bioanal Chem ; 413(10): 2747-2754, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33025035

RESUMEN

The ability to spatially resolve the chemical distribution of compounds on a surface is important in many applications ranging from biological to material science. To this extent, we have recently introduced a hybrid atomic force microscopy (AFM)-mass spectrometry (MS) system for direct thermal desorption and pyrolysis of material with nanoscale chemical resolution. However, spatially resolved direct surface heating using local thermal desorption becomes challenging on material surfaces with low melting points, because the material will undergo a melting phase transition due to heat dissipation prior to onset of thermal desorption. Therefore, we developed an approach using mechanical sampling and collection of surface materials on an AFM cantilever probe tip for real-time analysis directly from the AFM tip. This approach allows for material to be concentrated directly onto the probe for subsequent MS analysis. We evaluate the performance metrics of the technique and demonstrate localized MS sampling from a candelilla wax matrix containing UV stabilizers avobenzone and oxinoxate from areas down to 250 nm × 250 nm. Overall, this approach removes heat dissipation into the bulk material allowing for a faster desorption and concentration of the gas phase analyte from a single heating pulse enabling higher signal levels from a given amount of material in a single sampling spot.Graphical abstract.

5.
Nat Mater ; 17(11): 1013-1019, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150621

RESUMEN

The extraordinary optoelectronic performance of hybrid organic-inorganic perovskites has resulted in extensive efforts to unravel their properties. Recently, observations of ferroic twin domains in methylammonium lead triiodide drew significant attention as a possible explanation for the current-voltage hysteretic behaviour in these materials. However, the properties of the twin domains, their local chemistry and the chemical impact on optoelectronic performance remain unclear. Here, using multimodal chemical and functional imaging methods, we unveil the mechanical origin of the twin domain contrast observed with piezoresponse force microscopy in methylammonium lead triiodide. By combining experimental results with first principles simulations we reveal an inherent coupling between ferroelastic twin domains and chemical segregation. These results reveal an interplay of ferroic properties and chemical segregation on the optoelectronic performance of hybrid organic-inorganic perovskites, and offer an exploratory path to improving functional devices.

8.
Nano Lett ; 13(12): 5954-60, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24215396

RESUMEN

Here we report the bias-evolution of the electrical double layer structure of an ionic liquid on highly ordered pyrolytic graphite measured by atomic force microscopy. We observe reconfiguration under applied bias and the orientational transitions in the Stern layer. The synergy between molecular dynamics simulation and experiment provides a comprehensive picture of structural phenomena and long and short-range interactions, which improves our understanding of the mechanism of charge storage on a molecular level.


Asunto(s)
Grafito/química , Líquidos Iónicos/química , Microscopía de Fuerza Atómica/métodos , Simulación de Dinámica Molecular , Propiedades de Superficie
9.
Macromolecules ; 57(3): 1118-1127, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38370912

RESUMEN

Polymeric materials are widely used in industries ranging from automotive to biomedical. Their mechanical properties play a crucial role in their application and function and arise from the nanoscale structures and interactions of their constitutive polymer molecules. Polymeric materials behave viscoelastically, i.e., their mechanical responses depend on the time scale of the measurements; quantifying these time-dependent rheological properties at the nanoscale is relevant to develop, for example, accurate models and simulations of those materials, which are needed for advanced industrial applications. In this paper, an atomic force microscopy (AFM) method based on the photothermal actuation of an AFM cantilever is developed to quantify the nanoscale loss tangent, storage modulus, and loss modulus of polymeric materials. The method is then validated on styrene-butadiene rubber (SBR), demonstrating the method's ability to quantify nanoscale viscoelasticity over a continuous frequency range up to 5 orders of magnitude (0.2-20,200 Hz). Furthermore, this method is combined with AFM viscoelastic mapping obtained with amplitude modulation-frequency modulation (AM-FM) AFM, enabling the extension of viscoelastic quantification over an even broader frequency range and demonstrating that the novel technique synergizes with preexisting AFM techniques for quantitative measurement of viscoelastic properties. The method presented here introduces a way to characterize the viscoelasticity of polymeric materials and soft and biological matter in general at the nanoscale for any application.

10.
Nanotechnology ; 23(38): 385706, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22948033

RESUMEN

We have performed near-field scanning microwave microscopy (SMM) of graphene grown by chemical vapor deposition. Due to the use of probe-sample capacitive coupling and a relatively high ac frequency of a few GHz, this scanning probe method allows mapping of local conductivity without a dedicated counter electrode, with a spatial resolution of about 50 nm. Here, the coupling was enabled by atomic layer deposition of alumina on top of graphene, which in turn enabled imaging both large-area films, as well as micron-sized islands, with a dynamic range covering a low sheet resistance of a metal film and a high resistance of highly disordered graphene. The structures of graphene grown on Ni films and Cu foils are explored, and the effects of growth conditions are elucidated. We present a simple general scheme for interpretation of the contrast in the SMM images of our graphene samples and other two-dimensional conductors, which is supported by extensive numerical finite-element modeling. We further demonstrate that combination of the SMM and numerical modeling allows quantitative information about the sheet resistance of graphene to be obtained, paving the pathway for characterization of graphene conductivity with a sub-100 nm special resolution.


Asunto(s)
Grafito/química , Microscopía de Sonda de Barrido/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Ensayo de Materiales , Microondas , Tamaño de la Partícula , Propiedades de Superficie
11.
Langmuir ; 27(2): 697-704, 2011 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-21158392

RESUMEN

We present the first direct comparison of scanning ion conductance microscopy (SICM) with atomic force microscopy (AFM) for cell imaging. By imaging the same fibroblast or myoblast cell with both technologies in series, we highlight their advantages and disadvantages with respect to cell imaging. The finite imaging force applied to the sample in AFM imaging results in a coupling of mechanical sample properties into the measured sample topography. For soft samples such as cells this leads to artifacts in the measured topography and to elastic deformation, which we demonstrate by imaging whole fixed cells and cell extensions at high resolution. SICM imaging, on the other hand, has a noncontact character and can provide the true topography of soft samples at a comparable resolution.


Asunto(s)
Fibroblastos/citología , Pulmón/citología , Microscopía de Sonda de Barrido , Humanos , Microscopía de Fuerza Atómica
12.
Nanotechnology ; 22(5): 055709, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21178256

RESUMEN

Phase transitions in purple membrane have been a topic of debate for the past two decades. In this work we present studies of a reversible transition of purple membrane in the 50-60 °C range in zeptoliter volumes under different heating regimes (global heating and local heating). The temperature of the reversible phase transition is 52 ± 5 °C for both local and global heating, supporting the hypothesis that this transition is mainly due to a structural rearrangement of bR molecules and trimers. To achieve high resolution measurements of temperature-dependent phase transitions, a new scanning probe microscopy-based method was developed. We believe that our new technique can be extended to other biological systems and can contribute to the understanding of inhomogeneous phase transitions in complex systems.


Asunto(s)
Microquímica , Transición de Fase , Membrana Púrpura/química , Temperatura , Microscopía de Fuerza Atómica , Membrana Púrpura/ultraestructura
13.
Nano Lett ; 10(6): 2003-11, 2010 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-20455527

RESUMEN

Formation of ferroelastic twin domains in vanadium dioxide (VO(2)) nanosystems can strongly affect local strain distributions, and hence couple to the strain-controlled metal-insulator transition. Here we report polarized-light optical and scanning microwave microscopy studies of interrelated ferroelastic and metal-insulator transitions in single-crystalline VO(2) quasi-two-dimensional (quasi-2D) nanoplatelets (NPls). In contrast to quasi-1D single-crystalline nanobeams, the 2D geometric frustration results in emergence of several possible families of ferroelastic domains in NPls, thus allowing systematic studies of strain-controlled transitions in the presence of geometrical frustration. We demonstrate the possibility of controlling the ferroelastic domain population by the strength of the NPl-substrate interaction, mechanical stress, and by the NPl lateral size. Ferroelastic domain species and domain walls are identified based on standard group-theoretical considerations. Using variable temperature microscopy, we imaged the development of domains of metallic and semiconducting phases during the metal-insulator phase transition and nontrivial strain-driven reentrant domain formation. A long-range reconstruction of ferroelastic structures accommodating metal-insulator domain formation has been observed. These studies illustrate that a complete picture of the phase transitions in single-crystalline and disordered VO(2) structures can be drawn only if both ferroelastic and metal-insulator strain effects are taken into consideration and understood.

14.
Nanoscale ; 13(41): 17428-17441, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34647552

RESUMEN

The simultaneous excitation and measurement of two eigenmodes in bimodal atomic force microscopy (AFM) during sub-micron scale surface imaging augments the number of observables at each pixel of the image compared to the normal tapping mode. However, a comprehensive connection between the bimodal AFM observables and the surface adhesive and viscoelastic properties of polymer samples remains elusive. To address this gap, we first propose an algorithm that systematically accommodates surface forces and linearly viscoelastic three-dimensional deformation computed via Attard's model into the bimodal AFM framework. The proposed algorithm simultaneously satisfies the amplitude reduction formulas for both resonant eigenmodes and enables the rigorous prediction and interpretation of bimodal AFM observables with a first-principles approach. We used the proposed algorithm to predict the dependence of bimodal AFM observables on local adhesion and standard linear solid (SLS) constitutive parameters as well as operating conditions. Secondly, we present an inverse method to quantitatively predict the local adhesion and SLS viscoelastic parameters from bimodal AFM data acquired on a heterogeneous sample. We demonstrate the method experimentally using bimodal AFM on polystyrene-low density polyethylene (PS-LDPE) polymer blend. This inverse method enables the quantitative discrimination of adhesion and viscoelastic properties from bimodal AFM maps of such samples and opens the door for advanced computational interaction models to be used to quantify local nanomechanical properties of adhesive, viscoelastic materials using bimodal AFM.

15.
ACS Nano ; 15(1): 1850-1857, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33412008

RESUMEN

High-speed atomic force microscopy (AFM) enabled the imaging of protein interactions with millisecond time resolutions (10 fps). However, the acquisition of nanomechanical maps of proteins is about 100 times slower. Here, we developed a high-speed bimodal AFM that provided high-spatial resolution maps of the elastic modulus, the loss tangent, and the topography at imaging rates of 5 fps. The microscope was applied to identify the initial stages of the self-assembly of the collagen structures. By following the changes in the physical properties, we identified four stages, nucleation and growth of collagen precursors, formation of tropocollagen molecules, assembly of tropocollagens into microfibrils, and alignment of microfibrils to generate microribbons. Some emerging collagen structures never matured, and after an existence of several seconds, they disappeared into the solution. The elastic modulus of a microfibril (∼4 MPa) implied very small stiffness (∼3 × 10-6 N/m). Those values amplified the amplitude of the collagen thermal fluctuations on the mica plane, which facilitated microribbon build-up.

16.
ACS Nano ; 15(4): 7139-7148, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33770442

RESUMEN

Metal halide perovskite (MHP) solar cells have attracted worldwide research interest. Although it has been well established that grain, grain boundary, and grain facet affect MHPs optoelectronic properties, less is known about subgrain structures. Recently, MHP twin stripes, a subgrain feature, have stimulated extensive discussion due to the potential for both beneficial and detrimental effects of ferroelectricity on optoelectronic properties. Connecting the ferroic behavior of twin stripes in MHPs with crystal orientation will be a vital step to understand the ferroic nature and the effects of twin stripes. In this work, we studied the crystallographic orientation and ferroic properties of CH3NH3PbI3 twin stripes, using electron backscatter diffraction (EBSD) and advanced piezoresponse force microscopy (PFM), respectively. Using EBSD, we discovered that the orientation relationship across the twin walls in CH3NH3PbI3 is a 90° rotation about ⟨1̅1̅0⟩, with the ⟨030⟩ and ⟨111⟩ directions parallel to the direction normal to the surface. By careful inspection of CH3NH3PbI3 PFM results including in-plane and out-of-plane PFM measurements, we demonstrate some nonferroelectric contributions to the PFM responses of this CH3NH3PbI3 sample, suggesting that the PFM signal in this CH3NH3PbI3 sample is affected by nonferroelectric and nonpiezoelectric forces. If there is piezoelectric response, it is below the detection sensitivity of our interferometric displacement sensor PFM (<0.615 pm/V). Overall, this work offers an integrated picture describing the crystallographic orientations and the origin of PFM signal of MHPs twin stripes, which is critical to understanding the ferroicity in MHPs.

17.
Adv Mater ; 33(43): e2103680, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34510569

RESUMEN

Field-induced domain-wall dynamics in ferroelectric materials underpins multiple applications ranging from actuators to information technology devices and necessitates a quantitative description of the associated mechanisms including giant electromechanical couplings, controlled nonlinearities, or low coercive voltages. While the advances in dynamic piezoresponse force microscopy measurements over the last two decades have rendered visualization of polarization dynamics relatively straightforward, the associated insights into the local mechanisms have been elusive. This work explores the domain dynamics in model polycrystalline materials using a workflow combining deep-learning-based segmentation of the domain structures with nonlinear dimensionality reduction using multilayer rotationally invariant autoencoders (rVAE). The former allows unambiguous identification and classification of the ferroelectric and ferroelastic domain walls. The rVAE discovers the latent representations of the domain wall geometries and their dynamics, thus providing insight into the intrinsic mechanisms of polarization switching, that can further be compared to simple physical models. The rVAE disentangles the factors affecting the pinning efficiency of ferroelectric walls, offering insights into the correlation of ferroelastic wall distribution and ferroelectric wall pinning.

18.
Adv Mater ; 33(10): e2006089, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33533113

RESUMEN

The synthesis of fully epitaxial ferroelectric Hf0.5 Zr0.5 O2 (HZO) thin films through the use of a conducting pyrochlore oxide electrode that acts as a structural and chemical template is reported. Such pyrochlores, exemplified by Pb2 Ir2 O7 (PIO) and Bi2 Ru2 O7 (BRO), exhibit metallic conductivity with room-temperature resistivity of <1 mΩ cm and are closely lattice matched to yttria-stabilized zirconia substrates as well as the HZO layers grown on top of them. Evidence for epitaxy and domain formation is established with X-ray diffraction and scanning transmission electron microscopy, which show that the c-axis of the HZO film is normal to the substrate surface. The emergence of the non-polar-monoclinic phase from the polar-orthorhombic phase is observed when the HZO film thickness is ≥≈30 nm. Thermodynamic analyses reveal the role of epitaxial strain and surface energy in stabilizing the polar phase as well as its coexistence with the non-polar-monoclinic phase as a function of film thickness.

19.
Nanotechnology ; 21(45): 455705, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-20947936

RESUMEN

Local dissipation measurements by scanning probe microscopy have attracted increasing interest as a method for probing energy losses and hysteretic phenomena due to magnetic, electrical, and structural transformations at the tip-surface junction. One challenge of this technique is the lack of a standard for ensuring quantification of the dissipation signal. In the following, we explored magnetic dissipation imaging of an yttrium-iron garnet (YIG) sample, using a number of similar but not identical cantilever probes. Typical frequency-dependent dispersion of the actuator-probe assembly commonly approached ± 1 part in 10(3) Hz(-1), much larger than the minimum detectable level of ± 1 part in 10(5) Hz(-1). This cantilever-dependent behavior results in a strong crosstalk between the conservative (frequency) and dissipative channels. This crosstalk was very apparent in the YIG dissipation images and in fact should be an inherent feature of single-frequency heterodyne detection schemes. It may also be a common effect in other dissipation imaging, even down to the atomic level, and in particular may be a significant issue when there are correlations between the conservative and dissipative components. On the other hand, we present a simple method for correcting for this effect. This correction technique resulted in self-consistent results for the YIG dissipation measurements and would presumably be effective for other systems as well.

20.
ACS Nano ; 14(12): 16791-16802, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33232114

RESUMEN

Materials ranging from adhesives, pharmaceuticals, lubricants, and personal care products are traditionally studied using macroscopic characterization techniques. However, their functionality is in reality defined by details of chemical organization on often noncrystalline matter with characteristic length scales on the order of microns to nanometers. Additionally, these materials are traditionally difficult to analyze using standard vacuum-based approaches that provide nanoscale chemical characterization due to their volatile and beam-sensitive nature. Therefore, approaches that operate under ambient conditions need to be developed that allow probing of nanoscale chemical phenomena and correlated functionality. Here, we demonstrate a tool for probing and visualizing local chemical environments and correlating them to material structure and functionality using advanced multimodal chemical imaging on a combined atomic force microscopy (AFM) and mass spectrometry (MS) system using tip-enhanced photothermal desorption with atmospheric pressure chemical ionization (APCI). We demonstrate enhanced performance metrics of the technique for correlated imaging and point sampling and illustrate the applicability for the analysis of trace chemicals on a human hair, additives in adhesives on paper, and pharmaceuticals samples notoriously difficult to analyze in a vacuum environment. Overall, this approach of correlating local chemical environments to structure and functionality is key to advancing research in many fields ranging from biology, to medicine, to material science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA