Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(24): 13275-13282, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32482865

RESUMEN

Microorganisms are ubiquitous and highly diverse in the atmosphere. Despite the potential impacts of airborne bacteria found in the lower atmosphere over the Southern Ocean (SO) on the ecology of Antarctica and on marine cloud phase, no previous region-wide assessment of bioaerosols over the SO has been reported. We conducted bacterial profiling of boundary layer shipboard aerosol samples obtained during an Austral summer research voyage, spanning 42.8 to 66.5°S. Contrary to findings over global subtropical regions and the Northern Hemisphere, where transport of microorganisms from continents often controls airborne communities, the great majority of the bacteria detected in our samples were marine, based on taxonomy, back trajectories, and source tracking analysis. Further, the beta diversity of airborne bacterial communities varied with latitude and temperature, but not with other meteorological variables. Limited meridional airborne transport restricts southward community dispersal, isolating Antarctica and inhibiting microorganism and nutrient deposition from lower latitudes to these same regions. A consequence and implication for this region's marine boundary layer and the clouds that overtop it is that it is truly pristine, free from continental and anthropogenic influences, with the ocean as the dominant source controlling low-level concentrations of cloud condensation nuclei and ice nucleating particles.


Asunto(s)
Microbiología del Aire , Bacterias/aislamiento & purificación , Océanos y Mares , Aerosoles/análisis , Regiones Antárticas , Bacterias/clasificación , Bacterias/genética , Geografía , Microbiota , Agua de Mar/microbiología , Temperatura
2.
Geophys Res Lett ; 49(6): e2021GL095879, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35864928

RESUMEN

We report on observations of corona discharges at the uppermost region of clouds characterized by emissions in a blue band of nitrogen molecules at 337 nm, with little activity in the red band of lightning leaders at 777.4 nm. Past work suggests that they are generated in cloud tops reaching the tropopause and above. Here we explore their occurrence in two convective environments of the same storm: one is developing with clouds reaching above the tropopause, and one is collapsing with lower cloud tops. We focus on those discharges that form a distinct category with rise times below 20 µs, implying that they are at the very top of the clouds. The discharges are observed in both environments. The observations suggest that a range of storm environments may generate corona discharges and that they may be common in convective surges.

3.
Atmos Meas Tech ; 11(3): 1615-1637, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31534555

RESUMEN

Recent studies have found that flight through deep convective storms and ingestion of high mass concentrations of ice crystals, also known as high ice water content (HIWC), into aircraft engines can adversely impact aircraft engine performance. These aircraft engine icing events caused by HIWC have been documented during flight in weak reflectivity regions near convective updraft regions that do not appear threatening in onboard weather radar data. Three airborne field campaigns were conducted in 2014 and 2015 to better understand how HIWC is distributed in deep convection, both as a function of altitude and proximity to convective updraft regions, and to facilitate development of new methods for detecting HIWC conditions, in addition to many other research and regulatory goals. This paper describes a prototype method for detecting HIWC conditions using geostationary (GEO) satellite imager data coupled with in-situ total water content (TWC) observations collected during the flight campaigns. Three satellite-derived parameters were determined to be most useful for determining HIWC probability: 1) the horizontal proximity of the aircraft to the nearest overshooting convective updraft or textured anvil cloud, 2) tropopause-relative infrared brightness temperature, and 3) daytime-only cloud optical depth. Statistical fits between collocated TWC and GEO satellite parameters were used to determine the membership functions for the fuzzy logic derivation of HIWC probability. The products were demonstrated using data from several campaign flights and validated using a subset of the satellite-aircraft collocation database. The daytime HIWC probability was found to agree quite well with TWC time trends and identified extreme TWC events with high probability. Discrimination of HIWC was more challenging at night with IR-only information. The products show the greatest capability for discriminating TWC ≥ 0.5 g m-3. Product validation remains challenging due to vertical TWC uncertainties and the typically coarse spatio-temporal resolution of the GEO data.

4.
Sci Data ; 5: 180122, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29969114

RESUMEN

OceanRAIN-the Ocean Rainfall And Ice-phase precipitation measurement Network-provides in-situ along-track shipboard data of precipitation, evaporation and the resulting freshwater flux at 1-min resolution over the global oceans from June 2010 to April 2017. More than 6.83 million minutes with 75 parameters from 8 ships cover all routinely measured atmospheric and oceanographic state variables along with those required to derive the turbulent heat fluxes. The precipitation parameter is based on measurements of the optical disdrometer ODM470 specifically designed for all-weather shipboard operations. The rain, snow and mixed-phase precipitation occurrence, intensity and accumulation are derived from particle size distributions. Additionally, microphysical parameters and radar-related parameters are provided. Addressing the need for high-quality in-situ precipitation data over the global oceans, OceanRAIN-1.0 is the first comprehensive along-track in-situ water cycle surface reference dataset for satellite product validation and retrieval calibration of the GPM (Global Precipitation Measurement) era, to improve the representation of precipitation and air-sea interactions in re-analyses and models, and to improve understanding of water cycle processes over the global oceans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA