Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(6 Pt 1): 061506, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11736190

RESUMEN

We develop a multiple particle tracking technique for making precise, localized measurements of the mechanical microenvironments of inhomogeneous materials. Using video microscopy, we simultaneously measure the Brownian dynamics of roughly one hundred fluorescent tracer particles embedded in a complex medium and interpret their motions in terms of local viscoelastic response. To help overcome the inherent statistical limitations due to the finite imaging volume and limited imaging times, we develop statistical techniques and analyze the distribution of particle displacements in order to make meaningful comparisons of individual particles and thus characterize the diversity and properties of the microenvironments. The ability to perform many local measurements simultaneously allows more precise measurements even in systems that evolve in time. We show several examples of inhomogeneous materials to demonstrate the flexibility of the technique and learn new details of the mechanics of the microenvironments that small particles explore. This technique extends other microrheological methods to allow simultaneous measurements of large numbers of probe particles, enabling heterogeneous samples to be studied more effectively.

2.
Int J Pharm ; 367(1-2): 51-7, 2009 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-18848874

RESUMEN

Mannitol particles, produced by spray drying (SD), have been used commercially (Aridol) in bronchial provocation test. In this study, we propose an alternative method to produce inhalable mannitol powders. The elongated mannitol particles (number median length 4.0microm, and axial ratio of 3.5) were prepared using a confined liquid impinging jets (CLIJs) followed by jet milling (JM). Spray dried and jet milled raw mannitol particles were compared in an attempt to assess the performance of the particles produced by the new method. Aerosol performance of the three different powders (CLIJ, SD, and JM) was relatively poor (fine particle fraction or FPF(loaded) below 15%) when dispersed by the Rotahaler. Dispersion through the Aeroliser led to better aerosol performance of the CLIJ mannitol (FPF(loaded) 20.3%), which is worse than the JM (FPF(loaded) 30.3%) and SD mannitol particles (FPF(loaded) 45.7%) at 60 L/min, but comparable (FPF(loaded) 40.0%) with those of the JM (FPF(loaded) 40.7%) and SD (FPF(loaded) 45.5%) powders at 100L/min. Hence, the optimum use of these elongated mannitol particles can be achieved at increased air flow with a more efficient inhaler. In addition to crystallinity, morphology, and particle size distribution, the surface energies of these powders were measured to explain the differences in aerosol performance. A major advantage of using the CLIJ method is that it can be scaled up with a good yield as the precipitate can be largely collected and recovered on a filter, compared with spray drying which has a low collection efficiency for fine particles below 2microm.


Asunto(s)
Composición de Medicamentos/métodos , Manitol/administración & dosificación , Manitol/química , Administración por Inhalación , Aerosoles , Cromatografía de Gases , Cristalización , Tamaño de la Partícula , Polvos , Propiedades de Superficie , Difracción de Rayos X
3.
Nat Nanotechnol ; 3(6): 327-31, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18654541

RESUMEN

Polymer-based composites were heralded in the 1960s as a new paradigm for materials. By dispersing strong, highly stiff fibres in a polymer matrix, high-performance lightweight composites could be developed and tailored to individual applications. Today we stand at a similar threshold in the realm of polymer nanocomposites with the promise of strong, durable, multifunctional materials with low nanofiller content. However, the cost of nanoparticles, their availability and the challenges that remain to achieve good dispersion pose significant obstacles to these goals. Here, we report the creation of polymer nanocomposites with functionalized graphene sheets, which overcome these obstacles and provide superb polymer-particle interactions. An unprecedented shift in glass transition temperature of over 40 degrees C is obtained for poly(acrylonitrile) at 1 wt% functionalized graphene sheet, and with only 0.05 wt% functionalized graphene sheet in poly(methyl methacrylate) there is an improvement of nearly 30 degrees C. Modulus, ultimate strength and thermal stability follow a similar trend, with values for functionalized graphene sheet- poly(methyl methacrylate) rivaling those for single-walled carbon nanotube-poly(methyl methacrylate) composites.


Asunto(s)
Carbono/química , Cristalización/métodos , Membranas Artificiales , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Polimetil Metacrilato/química , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Polímeros/química , Propiedades de Superficie
4.
Biomacromolecules ; 1(4): 782-8, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11710212

RESUMEN

Enzymatic degradation of guar galactomannan is studied using gel permeation chromatography (GPC) and steady shear viscometry. In very dilute polymer solutions, reaction rate increases with first-order kinetics with substrate concentration. In the intermediate concentration regime, the enzyme/polymer binding saturates, and the degradation kinetics is zero-order. The observations are in accord with a Michaelis-Menton kinetics model. The Michaelis-Menton parameter, Km and Vmax, were determined to be 0.6 mM and 7.8 x 10(-10) mol/(mL s) for guar at pH = 7, where the maximal velocity of the reaction, Vmax, was measured in terms of the molar concentration of glycosidic bonds broken per unit time. However, as the solution increases in concentration, the reaction rate decreases and the enzyme diffusion through the concentrated polymer gel becomes a limiting factor. A reaction-diffusion model is presented to express the competition between enzyme reaction and diffusion. The scaling theory and kinetic data are used to define the boundaries of the polymer concentration regimes between substrate (i.e., polymer strand) limited reactions, enzyme limited reactions, and hindered diffusion limited reactions. The influence of polymer derivatization on the degradation kinetics was also explored. The degradation rate was shown to be greatly affected by the type of substituent groups as well as the degree of substitution. The triggering mechanism and controlled degradation were found for the enzymatic hydrolysis of cationically derivatized guar solutions.


Asunto(s)
Galactanos/química , Mananos/química , Manosidasas/química , Algoritmos , Aspergillus niger/enzimología , Secuencia de Carbohidratos , Cromatografía en Gel , Difusión , Galactosa/análogos & derivados , Hidrólisis , Cinética , Datos de Secuencia Molecular , Peso Molecular , Gomas de Plantas , Especificidad por Sustrato , Viscosidad , beta-Manosidasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA