Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215587

RESUMEN

Gullain-Barré syndrome (GBS) is an acute peripheral neuropathy often preceded by respiratory or gastrointestinal infections, though molecular testing of cerebrospinal fluid (CSF) is often inconclusive. In a recent case of severe pediatric GBS in British Columbia, Canada, we detected CSF antibodies against enterovirus D (EV-D) to link GBS with prior EV-D68 respiratory infection.

2.
Am J Epidemiol ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117572

RESUMEN

The mechanisms facilitating the relationship between low income and COVID-19 severity have not been partitioned in the presence of SARS-CoV-2 variants of concern (VOC). To address this, we used causal mediation analysis to quantify the possible mediating role infection with VOC has on the relationship between neighbourhood income (exposure) and hospitalisation due to COVID-19 among cases (outcome). A population-based cohort of 65,629 individuals residing in British Columbia, Canada, was divided into three periods of VOC co-circulation in the 2021 calendar year whereby each period included co-circulation of an emerging and an established VOC. Each cohort was subjected to g-formula mediation techniques to decompose the relationship between exposure and outcome into total, direct and indirect effects. In the mediation analysis, the total effects indicated that low income was associated with increased odds of hospitalisation across all periods. Further decomposition of the effects revealed that income is directly and indirectly associated with hospitalisation. The resulting indirect effect through VOC accounted for approximately between 6 and 13% of the total effect of income on hospitalisation. This study underscores, conditional on the analysis, the importance of addressing underlying inequities to mitigate the disproportionate impact on historically marginalised communities by adopting an equity lens as central to pandemic preparedness and response from the onset.

3.
J Clin Microbiol ; 62(3): e0010322, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315007

RESUMEN

The ongoing COVID-19 pandemic necessitates cost-effective, high-throughput, and timely whole-genome sequencing (WGS) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses for outbreak investigations, identifying variants of concern (VoC), characterizing vaccine breakthrough infections, and public health surveillance. In addition, the enormous demand for WGS on supply chains and the resulting shortages of laboratory supplies necessitated the use of low-reagent and low-consumable methods. Here, we report an optimized library preparation method (the BCCDC cutdown method) that can be used in a high-throughput scenario, where one technologist can perform 576 library preparations (6 plates of 96 samples) over the course of one 8-hour shift. The same protocol can also be used in a rapid turnaround time scenario, from primary samples (up to 96 samples) to loading on a sequencer in an 8-hour shift. This new method uses Freed et al.'s 1,200 bp primer sets (Biol Methods Protoc 5:bpaa014, 2020, https://doi.org/10.1093/biomethods/bpaa014) and a modified and condensed Illumina DNA Prep workflow (Illumina, CA, USA). Compared to the original protocol, the application of this new method using hundreds of clinical specimens demonstrated equivalent results to the full-length DNA Prep workflow at 45% of the cost, 15% of consumables required (such as pipet tips), 25% of manual hands-on time, and 15% of on-instrument time if performing on a liquid handler, with no compromise in sequence quality. Results demonstrate that this new method is a rapid, simple, cost-effective, and high-quality SARS-CoV-2 WGS protocol. IMPORTANCE: Sequencing has played an invaluable role in the response to the COVID-19 pandemic. Ongoing work in this area, however, demands optimization of laboratory workflow to increase sequencing capacity, improve turnaround time, and reduce cost without compromising sequence quality. This report describes an optimized DNA library preparation method for improved whole-genome sequencing of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogen. The workflow advantages summarized here include significant time, cost, and consumable savings, which suggest that this new method is an efficient, scalable, and pragmatic alternative for SARS-CoV-2 whole-genome sequencing.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Análisis Costo-Beneficio , Pandemias , Biblioteca de Genes , ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
4.
Appl Environ Microbiol ; 90(2): e0084223, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38259077

RESUMEN

Diverse influenza A viruses (IAVs) circulate in wild birds, including highly pathogenic strains that infect poultry and humans. Consequently, surveillance of IAVs in wild birds is a cornerstone of agricultural biosecurity and pandemic preparedness. Surveillance is traditionally done by testing wild birds directly, but obtaining these specimens is labor intensive, detection rates can be low, and sampling is often biased toward certain avian species. As a result, local incursions of dangerous IAVs are rarely detected before outbreaks begin. Testing environmental specimens from wild bird habitats has been proposed as an alternative surveillance strategy. These specimens are thought to contain diverse IAVs deposited by a broad range of avian hosts, including species that are not typically sampled by surveillance programs. To enable this surveillance strategy, we developed a targeted genomic sequencing method for characterizing IAVs in these challenging environmental specimens. It combines custom hybridization probes, unique molecular index-based library construction, and purpose-built bioinformatic tools, allowing IAV genomic material to be enriched and analyzed with single-fragment resolution. We demonstrated our method on 90 sediment specimens from wetlands around Vancouver, Canada. We recovered 2,312 IAV genome fragments originating from all eight IAV genome segments. Eleven hemagglutinin subtypes and nine neuraminidase subtypes were detected, including H5, the current global surveillance priority. Our results demonstrate that targeted genomic sequencing of environmental specimens from wild bird habitats could become a valuable complement to avian influenza surveillance programs.IMPORTANCEIn this study, we developed genome sequencing tools for characterizing avian influenza viruses in sediment from wild bird habitats. These tools enable an environment-based approach to avian influenza surveillance. This could improve early detection of dangerous strains in local wild birds, allowing poultry producers to better protect their flocks and prevent human exposures to potential pandemic threats. Furthermore, we purposefully developed these methods to contend with viral genomic material that is diluted, fragmented, incomplete, and derived from multiple strains and hosts. These challenges are common to many environmental specimens, making these methods broadly applicable for genomic pathogen surveillance in diverse contexts.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Aves , Genómica , Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Filogenia , Aves de Corral , Humedales
5.
BMC Infect Dis ; 24(1): 262, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408924

RESUMEN

BACKGROUND: Widespread human-to-human transmission of the severe acute respiratory syndrome coronavirus two (SARS-CoV-2) stems from a strong affinity for the cellular receptor angiotensin converting enzyme two (ACE2). We investigate the relationship between a patient's nasopharyngeal ACE2 transcription and secondary transmission within a series of concurrent hospital associated SARS-CoV-2 outbreaks in British Columbia, Canada. METHODS: Epidemiological case data from the outbreak investigations was merged with public health laboratory records and viral lineage calls, from whole genome sequencing, to reconstruct the concurrent outbreaks using infection tracing transmission network analysis. ACE2 transcription and RNA viral load were measured by quantitative real-time polymerase chain reaction. The transmission network was resolved to calculate the number of potential secondary cases. Bivariate and multivariable analyses using Poisson and Negative Binomial regression models was performed to estimate the association between ACE2 transcription the number of SARS-CoV-2 secondary cases. RESULTS: The infection tracing transmission network provided n = 76 potential transmission events across n = 103 cases. Bivariate comparisons found that on average ACE2 transcription did not differ between patients and healthcare workers (P = 0.86). High ACE2 transcription was observed in 98.6% of transmission events, either the primary or secondary case had above average ACE2. Multivariable analysis found that the association between ACE2 transcription (log2 fold-change) and the number of secondary transmission events differs between patients and healthcare workers. In health care workers Negative Binomial regression estimated that a one-unit change in ACE2 transcription decreases the number of secondary cases (ß = -0.132 (95%CI: -0.255 to -0.0181) adjusting for RNA viral load. Conversely, in patients a one-unit change in ACE2 transcription increases the number of secondary cases (ß = 0.187 (95% CI: 0.0101 to 0.370) adjusting for RNA viral load. Sensitivity analysis found no significant relationship between ACE2 and secondary transmission in health care workers and confirmed the positive association among patients. CONCLUSION: Our study suggests that ACE2 transcription has a positive association with SARS-CoV-2 secondary transmission in admitted inpatients, but not health care workers in concurrent hospital associated outbreaks, and it should be further investigated as a risk-factor for viral transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2 , Colombia Británica/epidemiología , COVID-19/epidemiología , Brotes de Enfermedades , Hospitales , ARN , SARS-CoV-2/genética
6.
BMC Vet Res ; 20(1): 304, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982461

RESUMEN

BACKGROUND: The primary objective of this cross-sectional study, conducted in Québec and Bristish Columbia (Canada) between February 2021 and January 2022, was to measure the prevalence of viral RNA in oronasal and rectal swabs and serum antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) amongst cats living in households with at least one confirmed human case. Secondary objectives included a description of potential risk factors for the presence of SARS-CoV-2 antibodies and an estimation of the association between the presence of viral RNA in swabs as well as SARS-CoV-2 antibodies and clinical signs. Oronasal and rectal swabs and sera were collected from 55 cats from 40 households at most 15 days after a human case confirmation, and at up to two follow-up visits. A RT-qPCR assay and an ELISA were used to detect SARS-CoV-2 RNA in swabs and serum SARS-CoV-2 IgG antibodies, respectively. Prevalence and 95% Bayesian credibility intervals (BCI) were calculated, and associations were evaluated using prevalence ratio and 95% BCI obtained from Bayesian mixed log-binomial models. RESULTS: Nine (0.16; 95% BCI = 0.08-0.28) and 38 (0.69; 95% BCI = 0.56-0.80) cats had at least one positive RT-qPCR and at least one positive serological test result, respectively. No risk factor was associated with the prevalence of SARS-CoV-2 serum antibodies. The prevalence of clinical signs suggestive of COVID-19 in cats, mainly sneezing, was 2.12 (95% BCI = 1.03-3.98) times higher amongst cats with detectable viral RNA compared to those without. CONCLUSIONS: We showed that cats develop antibodies to SARS-CoV-2 when exposed to recent human cases, but detection of viral RNA on swabs is rare, even when sampling occurs soon after confirmation of a human case. Moreover, cats with detectable levels of virus showed clinical signs more often than cats without signs, which can be useful for the management of such cases.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Enfermedades de los Gatos , ARN Viral , SARS-CoV-2 , Gatos , Animales , SARS-CoV-2/inmunología , Enfermedades de los Gatos/virología , Enfermedades de los Gatos/epidemiología , Anticuerpos Antivirales/sangre , COVID-19/veterinaria , COVID-19/epidemiología , COVID-19/diagnóstico , COVID-19/virología , Estudios Transversales , Humanos , Femenino , Masculino , Prevalencia
7.
J Infect Dis ; 227(7): 838-849, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35668700

RESUMEN

BACKGROUND: Longer-term humoral responses to 2-dose coronavirus disease 2019 (COVID-19) vaccines remain incompletely characterized in people living with human immunodeficiency virus (HIV) (PLWH), as do initial responses to a third dose. METHODS: We measured antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain, angiotensin-converting enzyme 2 (ACE2) displacement, and viral neutralization against wild-type and Omicron strains up to 6 months after 2-dose vaccination, and 1 month after the third dose, in 99 PLWH receiving suppressive antiretroviral therapy and 152 controls. RESULTS: Although humoral responses naturally decline after 2-dose vaccination, we found no evidence of lower antibody concentrations or faster rates of antibody decline in PLWH compared with controls after accounting for sociodemographic, health, and vaccine-related factors. We also found no evidence of poorer viral neutralization in PLWH after 2 doses, nor evidence that a low nadir CD4+ T-cell count compromised responses. Post-third-dose humoral responses substantially exceeded post-second-dose levels, though Omicron-specific responses were consistently weaker than responses against wild-type virus. Nevertheless, post-third-dose responses in PLWH were comparable to or higher than controls. An mRNA-1273 third dose was the strongest consistent correlate of higher post-third-dose responses. CONCLUSION: PLWH receiving suppressive antiretroviral therapy mount strong antibody responses after 2- and 3-dose COVID-19 vaccination. Results underscore the immune benefits of third doses in light of Omicron.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , VIH , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos , Vacunación , Infecciones por VIH/tratamiento farmacológico , Anticuerpos Antivirales
8.
Clin Infect Dis ; 76(3): e18-e25, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36041009

RESUMEN

BACKGROUND: In late 2021, the Omicron severe acute respiratory syndrome coronavirus 2 variant emerged and rapidly replaced Delta as the dominant variant. The increased transmissibility of Omicron led to surges in case rates and hospitalizations; however, the true severity of the variant remained unclear. We aimed to provide robust estimates of Omicron severity relative to Delta. METHODS: This retrospective cohort study was conducted with data from the British Columbia COVID-19 Cohort, a large provincial surveillance platform with linkage to administrative datasets. To capture the time of cocirculation with Omicron and Delta, December 2021 was chosen as the study period. Whole-genome sequencing was used to determine Omicron and Delta variants. To assess the severity (hospitalization, intensive care unit [ICU] admission, length of stay), we conducted adjusted Cox proportional hazard models, weighted by inverse probability of treatment weights (IPTW). RESULTS: The cohort was composed of 13 128 individuals (7729 Omicron and 5399 Delta). There were 419 coronavirus disease 2019 hospitalizations, with 118 (22%) among people diagnosed with Omicron (crude rate = 1.5% Omicron, 5.6% Delta). In multivariable IPTW analysis, Omicron was associated with a 50% lower risk of hospitalization compared with Delta (adjusted hazard ratio [aHR] = 0.50, 95% confidence interval [CI] = 0.43 to 0.59), a 73% lower risk of ICU admission (aHR = 0.27, 95% CI = 0.19 to 0.38), and a 5-day shorter hospital stay (aß = -5.03, 95% CI = -8.01 to -2.05). CONCLUSIONS: Our analysis supports findings from other studies that have demonstrated lower risk of severe outcomes in Omicron-infected individuals relative to Delta.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Colombia Británica/epidemiología , SARS-CoV-2/genética , Estudios Retrospectivos , COVID-19/epidemiología
9.
Emerg Infect Dis ; 29(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37610295

RESUMEN

During 2006-2021, Canada had 55 laboratory-confirmed outbreaks of foodborne botulism, involving 67 cases. The mean annual incidence was 0.01 case/100,000 population. Foodborne botulism in Indigenous communities accounted for 46% of all cases, which is down from 85% of all cases during 1990-2005. Among all cases, 52% were caused by botulinum neurotoxin type E, but types A (24%), B (16%), F (3%), and AB (1%) also occurred; 3% were caused by undetermined serotypes. Four outbreaks resulted from commercial products, including a 2006 international outbreak caused by carrot juice. Hospital data indicated that 78% of patients were transferred to special care units and 70% required mechanical ventilation; 7 deaths were reported. Botulinum neurotoxin type A was associated with much longer hospital stays and more time spent in special care than types B or E. Foodborne botulism often is misdiagnosed. Increased clinician awareness can improve diagnosis, which can aid epidemiologic investigations and patient treatment.


Asunto(s)
Botulismo , Humanos , Botulismo/diagnóstico , Botulismo/epidemiología , Canadá/epidemiología , Brotes de Enfermedades , Hospitales , Laboratorios
10.
Emerg Infect Dis ; 29(10): 1999-2007, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37640374

RESUMEN

In British Columbia, Canada, initial growth of the SARS-CoV-2 Delta variant was slower than that reported in other jurisdictions. Delta became the dominant variant (>50% prevalence) within ≈7-13 weeks of first detection in regions within the United Kingdom and United States. In British Columbia, it remained at <10% of weekly incident COVID-19 cases for 13 weeks after first detection on March 21, 2021, eventually reaching dominance after 17 weeks. We describe the growth of Delta variant cases in British Columbia during March 1-June 30, 2021, and apply retrospective counterfactual modeling to examine factors for the initially low COVID-19 case rate after Delta introduction, such as vaccination coverage and nonpharmaceutical interventions. Growth of COVID-19 cases in the first 3 months after Delta emergence was likely limited in British Columbia because additional nonpharmaceutical interventions were implemented to reduce levels of contact at the end of March 2021, soon after variant emergence.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Colombia Británica/epidemiología , SARS-CoV-2/genética , Estudios Retrospectivos , COVID-19/epidemiología , COVID-19/prevención & control
11.
J Med Virol ; 95(1): e28423, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36546412

RESUMEN

The SARS-CoV-2 variant Omicron emerged in late 2021. In British Columbia (BC), Canada, and globally, three genetically distinct subvariants of Omicron, BA.1, BA.2, and BA.5, emerged and became dominant successively within an 8-month period. SARS-CoV-2 subvariants continue to circulate in the population, acquiring new mutations that have the potential to alter infectivity, immunity, and disease severity. Here, we report a propensity-matched severity analysis from residents of BC over the course of the Omicron wave, including 39,237 individuals infected with BA.1, BA.2, or BA.5 based on paired high-quality sequence data and linked to comprehensive clinical outcomes data between December 23, 2021 and August 31, 2022. Relative to BA.1, BA.2 cases were associated with a 15% and 28% lower risk of hospitalization and intensive care unit (ICU) admission (aHRhospital = 1.17; 95% confidence interval [CI] = 1.096-1.252; aHRICU = 1.368; 95% CI = 1.152-1.624), whereas BA.5 infections were associated with an 18% higher risk of hospitalization (aHRhospital = 1.18; 95% CI = 1.133-1.224) after accounting for age, sex, comorbidities, vaccination status, geography, and social determinants of health. Phylogenetic analysis revealed no specific subclades associated with more severe clinical outcomes for any Omicron subvariant. In summary, BA.1, BA.2, and BA.5 subvariants were associated with differences in clinical severity, emphasizing how variant-specific monitoring programs remain critical components of patient and population-level public health responses as the pandemic continues.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Colombia Británica/epidemiología , SARS-CoV-2/genética , Estudios de Cohortes , Filogenia , COVID-19/epidemiología
12.
J Infect Dis ; 226(1): 485-496, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35084500

RESUMEN

BACKGROUND: In British Columbia, Canada, most adults 50-69 years old became eligible for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in April 2021, with chimpanzee adenoviral vectored vaccine (ChAdOx1) restricted to ≥55-year-olds and second doses deferred ≥6 weeks to optimize single-dose coverage. METHODS: Among adults 50-69 years old, single-dose messenger RNA (mRNA) and ChAdOx1 vaccine effectiveness (VE) against SARS-CoV-2 infection and hospitalization, including variant-specific, was assessed by test-negative design between 4 April and 2 October 2021. RESULTS: Single-dose VE included 11 861 cases and 99 544 controls. Median of postvaccination follow-up was 32 days (interquartile range, 15-52 days). Alpha, Gamma, and Delta variants comprised 23%, 18%, and 56%, respectively, of genetically characterized viruses. At 21-55 days postvaccination, single-dose mRNA and ChAdOx1 VE (95% confidence interval [CI]) was 74% (71%-76%) and 59% (53%-65%) against any infection and 86% (80%-90%) and 94% (85%-97%) against hospitalization, respectively. VE (95% CI) was similar against Alpha and Gamma infections for mRNA (80% [76%-84%] and 80% [75%-84%], respectively) and ChAdOx1 (69% [60%-76%] and 66% [56%-73%], respectively). mRNA VE was lower at 63% (95% CI, 56%-69%) against Delta but 85% (95% CI, 71%-92%) against Delta-associated hospitalization (nonestimable for ChAdOx1). CONCLUSIONS: A single mRNA or ChAdOx1 vaccine dose gave important protection against SARS-CoV-2, including early variants of concern. ChAdOx1 VE was lower against infection, but 1 dose of either vaccine reduced the hospitalization risk by >85% to at least 8 weeks postvaccination. Findings inform program options, including longer dosing intervals.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Anciano , Colombia Británica/epidemiología , COVID-19/prevención & control , Humanos , Persona de Mediana Edad , ARN Mensajero , SARS-CoV-2/genética , Eficacia de las Vacunas
13.
J Infect Dis ; 226(6): 983-994, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35543278

RESUMEN

BACKGROUND: Third coronavirus disease 2019 (COVID-19) vaccine doses are broadly recommended, but immunogenicity data remain limited, particularly in older adults. METHODS: We measured circulating antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain, ACE2 displacement, and virus neutralization against ancestral and omicron (BA.1) strains from prevaccine up to 1 month following the third dose, in 151 adults aged 24-98 years who received COVID-19 mRNA vaccines. RESULTS: Following 2 vaccine doses, humoral immunity was weaker, less functional, and less durable in older adults, where a higher number of chronic health conditions was a key correlate of weaker responses and poorer durability. One month after the third dose, antibody concentrations and function exceeded post-second-dose levels, and responses in older adults were comparable in magnitude to those in younger adults at this time. Humoral responses against omicron were universally weaker than against the ancestral strain after both the second and third doses. Nevertheless, after 3 doses, anti-omicron responses in older adults reached equivalence to those in younger adults. One month after 3 vaccine doses, the number of chronic health conditions, but not age, was the strongest consistent correlate of weaker humoral responses. CONCLUSIONS: Results underscore the immune benefits of third COVID-19 vaccine doses, particularly in older adults.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anciano , Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , ARN Mensajero , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas Sintéticas , Vacunas de ARNm
14.
Clin Infect Dis ; 74(7): 1158-1165, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244723

RESUMEN

BACKGROUND: Randomized-controlled trials of messenger RNA (mRNA) vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) included relatively few elderly participants. We assess single-dose mRNA vaccine effectiveness (VE) in adults ≥ 70 years old in British Columbia, Canada, where second doses were deferred by up to 16 weeks and where a spring 2021 wave uniquely included codominant circulation of Alpha (B.1.1.7) and Gamma (P.1) variants of concern (VOC). METHODS: Analyses included community-dwelling adults ≥ 70 years old with specimen collection between 4 April (epidemiological week 14) and 1 May (week 17) 2021. Adjusted VE was estimated by test-negative design. Cases were reverse-transcription polymerase chain reaction (RT-PCR) test-positive for SARS-CoV-2, and controls were test-negative. Vaccine status was defined by receipt of a single-dose ≥ 21 days before specimen collection, but a range of intervals was assessed. Variant-specific VE was estimated against viruses genetically characterized as Alpha, Gamma or non-VOC lineages. RESULTS: VE analyses included 16 993 specimens: 1226 (7%) test-positive cases and 15 767 test-negative controls. Of 1131 (92%) genetically characterized viruses, 509 (45%), 314 (28%), and 276 (24%) were Alpha, Gamma, and non-VOC lineages, respectively. At 0-13 days postvaccination, VE was negligible at 14% (95% confidence interval [CI], 0-26) but increased from 43% (95% CI, 30-53) at 14-20 days to 75% (95% CI, 63-83) at 35-41 days postvaccination. VE at ≥ 21 days postvaccination was 65% (95% CI, 58-71) overall: 72% (95% CI, 58-81), 67% (95% CI, 57-75), and 61% (95% CI, 45-72) for non-VOC, Alpha, and Gamma variants, respectively. CONCLUSIONS: A single dose of mRNA vaccine reduced the risk of SARS-CoV-2 by about two-thirds in adults ≥ 70 years old, with protection only minimally reduced against Alpha and Gamma variants.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Anciano , Colombia Británica/epidemiología , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , ARN Mensajero , SARS-CoV-2/genética , Vacunas Sintéticas , Vacunas de ARNm
15.
Clin Infect Dis ; 75(11): 1980-1992, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-35438175

RESUMEN

BACKGROUND: The Canadian coronavirus disease 2019 (COVID-19) immunization strategy deferred second doses and allowed mixed schedules. We compared 2-dose vaccine effectiveness (VE) by vaccine type (mRNA and/or ChAdOx1), interval between doses, and time since second dose in 2 of Canada's larger provinces. METHODS: Two-dose VE against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or hospitalization among adults ≥18 years, including due to Alpha, Gamma, and Delta variants of concern (VOCs), was assessed ≥14 days postvaccination by test-negative design studies separately conducted in British Columbia and Quebec, Canada, between 30 May and 27 November (epi-weeks 22-47) 2021. RESULTS: In both provinces, all homologous or heterologous mRNA and/or ChAdOx1 2-dose schedules were associated with ≥90% reduction in SARS-CoV-2 hospitalization risk for ≥7 months. With slight decline from a peak of >90%, VE against infection was ≥80% for ≥6 months following homologous mRNA vaccination, lower by ∼10% when both doses were ChAdOx1 but comparably high following heterologous ChAdOx1 + mRNA receipt. Findings were similar by age group, sex, and VOC. VE was significantly higher with longer 7-8-week versus manufacturer-specified 3-4-week intervals between mRNA doses. CONCLUSIONS: Two doses of any mRNA and/or ChAdOx1 combination gave substantial and sustained protection against SARS-CoV-2 hospitalization, spanning Delta-dominant circulation. ChAdOx1 VE against infection was improved by heterologous mRNA series completion. A 7-8-week interval between first and second doses improved mRNA VE and may be the optimal schedule outside periods of intense epidemic surge. Findings support interchangeability and extended intervals between SARS-CoV-2 vaccine doses, with potential global implications for low-coverage areas and, going forward, for children.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Niño , Humanos , Colombia Británica/epidemiología , Quebec/epidemiología , Vacunas contra la COVID-19 , Eficacia de las Vacunas , COVID-19/epidemiología , COVID-19/prevención & control , ARN Mensajero
16.
BMC Genomics ; 23(1): 579, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35953803

RESUMEN

BACKGROUND: Sequencing viruses in many specimens is hindered by excessive background material from hosts, microbiota, and environmental organisms. Consequently, enrichment of target genomic material is necessary for practical high-throughput viral genome sequencing. Hybridization probes are widely used for enrichment in many fields, but their application to viral sequencing faces a major obstacle: it is difficult to design panels of probe oligo sequences that broadly target many viral taxa due to their rapid evolution, extensive diversity, and genetic hypervariability. To address this challenge, we created ProbeTools, a package of bioinformatic tools for generating effective viral capture panels, and for assessing coverage of target sequences by probe panel designs in silico. In this study, we validated ProbeTools by designing a panel of 3600 probes for subtyping the hypervariable haemagglutinin (HA) and neuraminidase (NA) genome segments of avian-origin influenza A viruses (AIVs). Using in silico assessment of AIV reference sequences and in vitro capture on egg-cultured viral isolates, we demonstrated effective performance by our custom AIV panel and ProbeTools' suitability for challenging viral probe design applications. RESULTS: Based on ProbeTool's in silico analysis, our panel provided broadly inclusive coverage of 14,772 HA and 11,967 NA reference sequences. For each reference sequence, we calculated the percentage of nucleotide positions covered by our panel in silico; 90% of HA and NA references sequences had at least 90.8 and 95.1% of their nucleotide positions covered respectively. We also observed effective in vitro capture on a representative collection of 23 egg-cultured AIVs that included isolates from wild birds, poultry, and humans and representatives from all HA and NA subtypes. Forty-two of forty-six HA and NA segments had over 98.3% of their nucleotide positions significantly enriched by our custom panel. These in vitro results were further used to validate ProbeTools' in silico coverage assessment algorithm; 89.2% of in silico predictions were concordant with in vitro results. CONCLUSIONS: ProbeTools generated an effective panel for subtyping AIVs that can be deployed for genomic surveillance, outbreak prevention, and pandemic preparedness. Effective probe design against hypervariable AIV targets also validated ProbeTools' design and coverage assessment algorithms, demonstrating their suitability for other challenging viral capture applications.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Genómica , Humanos , Gripe Aviar/genética , Neuraminidasa/genética , Nucleótidos , Filogenia
17.
BMC Genomics ; 23(1): 710, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36258173

RESUMEN

BACKGROUND: The COVID-19 pandemic remains a global public health concern. Advances in sequencing technologies has allowed for high numbers of SARS-CoV-2 whole genome sequence (WGS) data and rapid sharing of sequences through global repositories to enable almost real-time genomic analysis of the pathogen. WGS data has been used previously to group genetically similar viral pathogens to reveal evidence of transmission, including methods that identify distinct clusters on a phylogenetic tree. Identifying clusters of linked cases can aid in the regional surveillance and management of the disease. In this study, we present a novel method for producing stable genomic clusters of SARS-CoV-2 cases, cov2clusters, and compare the accuracy and stability of our approach to previous methods used for phylogenetic clustering using real-world SARS-CoV-2 sequence data obtained from British Columbia, Canada. RESULTS: We found that cov2clusters produced more stable clusters than previously used phylogenetic clustering methods when adding sequence data through time, mimicking an increase in sequence data through the pandemic. Our method also showed high accuracy when predicting epidemiologically informed clusters from sequence data. CONCLUSIONS: Our new approach allows for the identification of stable clusters of SARS-CoV-2 from WGS data. Producing high-resolution SARS-CoV-2 clusters from sequence data alone can a challenge and, where possible, both genomic and epidemiological data should be used in combination.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , COVID-19/epidemiología , Filogenia , Genoma Viral , Genómica , Análisis por Conglomerados
18.
Emerg Infect Dis ; 28(6): 1154-1162, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35608925

RESUMEN

We tested swab specimens from pets in households in Ontario, Canada, with human COVID-19 cases by quantitative PCR for SARS-CoV-2 and surveyed pet owners for risk factors associated with infection and seropositivity. We tested serum samples for spike protein IgG and IgM in household pets and also in animals from shelters and low-cost neuter clinics. Among household pets, 2% (1/49) of swab specimens from dogs and 7.7% (5/65) from cats were PCR positive, but 41% of dog serum samples and 52% of cat serum samples were positive for SARS-CoV-2 IgG or IgM. The likelihood of SARS-CoV-2 seropositivity in pet samples was higher for cats but not dogs that slept on owners' beds and for dogs and cats that contracted a new illness. Seropositivity in neuter-clinic samples was 16% (35/221); in shelter samples, 9.3% (7/75). Our findings indicate a high likelihood for pets in households of humans with COVID-19 to seroconvert and become ill.


Asunto(s)
COVID-19 , Enfermedades de los Gatos , Enfermedades de los Perros , Animales , COVID-19/epidemiología , COVID-19/veterinaria , Enfermedades de los Gatos/epidemiología , Gatos , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/epidemiología , Perros , Inmunoglobulina G , Inmunoglobulina M , Ontario/epidemiología , Mascotas , Factores de Riesgo , SARS-CoV-2
19.
Emerg Infect Dis ; 27(11): 2802-2809, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34388358

RESUMEN

Several severe acute respiratory syndrome coronavirus 2 variants of concern (VOCs) emerged in late 2020; lineage B.1.1.7 initially dominated globally. However, lineages B.1.351 and P.1 represent potentially greater risk for transmission and immune escape. In British Columbia, Canada, B.1.1.7 and B.1.351 were first identified in December 2020 and P.1 in February 2021. We combined quantitative PCR and whole-genome sequencing to assess relative contribution of VOCs in nearly 67,000 infections during the first 16 weeks of 2021 in British Columbia. B.1.1.7 accounted for <10% of screened or sequenced specimens early on, increasing to >50% by week 8. P.1 accounted for <10% until week 10, increased rapidly to peak at week 12, and by week 13 codominated within 10% of rates of B.1.1.7. B.1.351 was a minority throughout. This rapid expansion of P.1 but suppression of B.1.351 expands our understanding of population-level VOC patterns and might provide clues to fitness determinants for emerging VOCs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Colombia Británica/epidemiología , COVID-19/epidemiología , COVID-19/virología , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
J Environ Sci (China) ; 107: 218-229, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34412784

RESUMEN

Detection of SARS-CoV-2 RNA in wastewater is a promising tool for informing public health decisions during the COVID-19 pandemic. However, approaches for its analysis by use of reverse transcription quantitative polymerase chain reaction (RT-qPCR) are still far from standardized globally. To characterize inter- and intra-laboratory variability among results when using various methods deployed across Canada, aliquots from a real wastewater sample were spiked with surrogates of SARS-CoV-2 (gamma-radiation inactivated SARS-CoV-2 and human coronavirus strain 229E [HCoV-229E]) at low and high levels then provided "blind" to eight laboratories. Concentration estimates reported by individual laboratories were consistently within a 1.0-log10 range for aliquots of the same spiked condition. All laboratories distinguished between low- and high-spikes for both surrogates. As expected, greater variability was observed in the results amongst laboratories than within individual laboratories, but SARS-CoV-2 RNA concentration estimates for each spiked condition remained mostly within 1.0-log10 ranges. The no-spike wastewater aliquots provided yielded non-detects or trace levels (<20 gene copies/mL) of SARS-CoV-2 RNA. Detections appear linked to methods that included or focused on the solids fraction of the wastewater matrix and might represent in-situ SARS-CoV-2 to the wastewater sample. HCoV-229E RNA was not detected in the no-spike aliquots. Overall, all methods yielded comparable results at the conditions tested. Partitioning behavior of SARS-CoV-2 and spiked surrogates in wastewater should be considered to evaluate method effectiveness. A consistent method and laboratory to explore wastewater SARS-CoV-2 temporal trends for a given system, with appropriate quality control protocols and documented in adequate detail should succeed.


Asunto(s)
COVID-19 , ARN Viral , Humanos , Laboratorios , Pandemias , SARS-CoV-2 , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA