Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Nature ; 582(7813): 525-529, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32581382

RESUMEN

Oceanic lithosphere carries volatiles, notably water, into the mantle through subduction at convergent plate boundaries. This subducted water exercises control on the production of magma, earthquakes, formation of continental crust and mineral resources. Identifying different potential fluid sources (sediments, crust and mantle lithosphere) and tracing fluids from their release to the surface has proved challenging1. Atlantic subduction zones are a valuable endmember when studying this deep water cycle because hydration in Atlantic lithosphere, produced by slow spreading, is expected to be highly non-uniform2. Here, as part of a multi-disciplinary project in the Lesser Antilles volcanic arc3, we studied boron trace element and isotopic fingerprints of melt inclusions. These reveal that serpentine-that is, hydrated mantle rather than crust or sediments-is a dominant supplier of subducted water to the central arc. This serpentine is most likely to reside in a set of major fracture zones subducted beneath the central arc over approximately the past ten million years. The current dehydration of these fracture zones coincides with the current locations of the highest rates of earthquakes and prominent low shear velocities, whereas the preceding history of dehydration is consistent with the locations of higher volcanic productivity and thicker arc crust. These combined geochemical and geophysical data indicate that the structure and hydration of the subducted plate are directly connected to the evolution of the arc and its associated seismic and volcanic hazards.

3.
Sci Adv ; 9(5): eadd2143, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36724230

RESUMEN

Volatiles expelled from subducted plates promote melting of the overlying warm mantle, feeding arc volcanism. However, debates continue over the factors controlling melt generation and transport, and how these determine the placement of volcanoes. To broaden our synoptic view of these fundamental mantle wedge processes, we image seismic attenuation beneath the Lesser Antilles arc, an end-member system that slowly subducts old, tectonized lithosphere. Punctuated anomalies with high ratios of bulk-to-shear attenuation (Qκ-1/Qµ-1 > 0.6) and VP/VS (>1.83) lie 40 km above the slab, representing expelled fluids that are retained in a cold boundary layer, transporting fluids toward the back-arc. The strongest attenuation (1000/QS ~ 20), characterizing melt in warm mantle, lies beneath the back-arc, revealing how back-arc mantle feeds arc volcanoes. Melt ponds under the upper plate and percolates toward the arc along structures from earlier back-arc spreading, demonstrating how slab dehydration, upper-plate properties, past tectonics, and resulting melt pathways collectively condition volcanism.

4.
Geochem Geophys Geosyst ; 20(1): 314-338, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30853858

RESUMEN

The Izu-Bonin-Mariana (IBM) fore arc preserves igneous rock assemblages that formed during subduction initiation circa 52 Ma. International Ocean Discovery Program (IODP) Expedition 352 cored four sites in the fore arc near the Ogasawara Plateau in order to document the magmatic response to subduction initiation and the physical, petrologic, and chemical stratigraphy of a nascent subduction zone. Two of these sites (U1440 and U1441) are underlain by fore-arc basalt (FAB). FABs have mid-ocean ridge basalt (MORB)-like compositions, however, FAB are consistently lower in the high-field strength elements (TiO2, P2O5, Zr) and Ni compared to MORB, with Na2O at the low end of the MORB field and FeO* at the high end. Almost all FABs are light rare earth element depleted, with low total REE, and have low ratios of highly incompatible to less incompatible elements (Ti/V, Zr/Y, Ce/Yb, and Zr/Sm) relative to MORB. Chemostratigraphic trends in Hole U1440B are consistent with the uppermost lavas forming off axis, whereas the lower lavas formed beneath a spreading center axis. Axial magma of U1440B becomes more fractionated upsection; overlying off-axis magmas return to more primitive compositions. Melt models require a two-stage process, with early garnet field melts extracted prior to later spinel field melts, with up to 23% melting to form the most depleted compositions. Mantle equilibration temperatures are higher than normal MORB (1,400 °C-1,480 °C) at relatively low pressures (1-2 GPa), which may reflect an influence of the Manus plume during subduction initiation. Our data support previous models of FAB origin by decompression melting but imply a source more depleted than normal MORB source mantle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA