Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 141(3): 407-18, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20434983

RESUMEN

How is chromatin architecture established and what role does it play in transcription? We show that the yeast regulatory locus UASg bears, in addition to binding sites for the activator Gal4, sites bound by the RSC complex. RSC positions a nucleosome, evidently partially unwound, in a structure that facilitates Gal4 binding to its sites. The complex comprises a barrier that imposes characteristic features of chromatin architecture. In the absence of RSC, ordinary nucleosomes encroach over the UASg and compete with Gal4 for binding. Taken with our previous work, the results show that both prior to and following induction, specific DNA-binding proteins are the predominant determinants of chromatin architecture at the GAL1/10 genes. RSC/nucleosome complexes are also found scattered around the yeast genome. Higher eukaryotic RSC lacks the specific DNA-binding determinants found on yeast RSC, and evidently Gal4 works in those organisms despite whatever obstacle broadly positioned nucleosomes present.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Galactoquinasa/genética , Células HeLa , Humanos , Elementos Reguladores de la Transcripción , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética
2.
Cell ; 153(6): 1180-2, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23901416
3.
Trends Genet ; 27(12): 487-92, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22019336

RESUMEN

Eukaryotic DNA is packaged in nucleosomes. How does this sequestration affect the ability of transcription regulators to access their sites? We cite evidence against the idea that nucleosome positioning is determined primarily by the intrinsic propensities of DNA sequences to form nucleosomes--such that, for example, regulatory sites would be 'nucleosome-free'. Instead, studies in yeast show that nucleosome positioning is primarily determined by specific DNA-binding proteins. Where nucleosomes would otherwise compete with regulatory protein binding (a modest but potentially biologically important effect), this obstacle can be relieved by at least two strategies for exposing regulatory sites. In contrast to their lack of effect on nucleosome positioning, DNA sequence differences do directly affect both the efficiencies with which nucleosomes form in regions flanking regulatory sites before induction, and the extent of their removal upon induction. These nucleosomes, evidently, inhibit basal transcription but are poised to be removed quickly upon command.


Asunto(s)
Nucleosomas/genética , Nucleosomas/metabolismo , Unión Proteica , Análisis de Secuencia de ADN
4.
PLoS Genet ; 11(7): e1005351, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26181810
5.
Curr Biol ; 18(1): R25-7, 2008 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-18177708

RESUMEN

Yeast growing for a considerable time in glucose 'remember' a previous exposure to galactose, the inducer of its galactose-utilization (GAL) genes. This memory is conveyed by a cytoplasmically transmitted galactokinase working as a signal transducer.


Asunto(s)
Epigénesis Genética , Saccharomyces cerevisiae/genética , Transcripción Genética/fisiología , Galactosa/metabolismo , Regulación de la Expresión Génica/fisiología , Glucosa/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal
6.
PLoS Biol ; 6(12): 2928-39, 2008 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19108605

RESUMEN

The relationship between chromatin structure and gene expression is a subject of intense study. The universal transcriptional activator Gal4 removes promoter nucleosomes as it triggers transcription, but how it does so has remained obscure. The reverse process, repression of transcription, has often been correlated with the presence of nucleosomes. But it is not known whether nucleosomes are required for that effect. A new quantitative assay describes, for any given location, the fraction of DNA molecules in the population that bears a nucleosome at any given instant. This allows us to follow the time courses of nucleosome removal and reformation, in wild-type and mutant cells, upon activation (by galactose) and repression (by glucose) of the GAL genes of yeast. We show that upon being freed of its inhibitor Gal80 by the action of galactose, Gal4 quickly recruits SWI/SNF to the genes, and that nucleosome "remodeler" rapidly removes promoter nucleosomes. In the absence of SWI/SNF, Gal4's action also results in nucleosome removal and the activation of transcription, but both processes are significantly delayed. Addition of glucose to cells growing in galactose represses transcription. But if galactose remains present, Gal4 continues to work, recruiting SWI/SNF and maintaining the promoter nucleosome-free despite it being repressed. This requirement for galactose is obviated in a mutant in which Gal4 works constitutively. These results show how an activator's recruiting function can control chromatin structure both during gene activation and repression. Thus, both under activating and repressing conditions, the activator can recruit an enzymatic machine that removes promoter nucleosomes. Our results show that whereas promoter nucleosome removal invariably accompanies activation, reformation of nucleosomes is not required for repression. The finding that there are two routes to nucleosome removal and activation of transcription-one that requires the action of SWI/SNF recruited by the activator, and a slower one that does not-clarifies our understanding of the early events of gene activation, and in particular corrects earlier reports that SWI/SNF plays no role in GAL gene induction. Our finding that chromatin structure is irrelevant for repression as studied here-that is, repression sets in as efficiently whether or not promoter nucleosomes are allowed to reform-contradicts the widely held, but little tested, idea that nucleosomes are required for repression. These findings were made possible by our nucleosome occupancy assay. The assay, we believe, will prove useful in studying other outstanding issues in the field.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Medios de Cultivo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Galactosa/metabolismo , Glucosa/metabolismo , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética , Activación Transcripcional
8.
Proc Natl Acad Sci U S A ; 110(18): 7101-3, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23584020
9.
Proc Natl Acad Sci U S A ; 105(8): 2975-80, 2008 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-18287040

RESUMEN

Induction of transcription of the GAL genes of yeast by galactose is a multistep process: Galactose frees the activator Gal4 of its inhibitor, Gal80, allowing Gal4 to recruit proteins required to transcribe the GAL genes. Here, we show that deletion of components of either the HSP90 or the HSP70 chaperone machinery delays this induction. This delay remains when the galactose-signaling pathway is bypassed, and it cannot be explained by a chaperone requirement for DNA binding by Gal4. Removal of promoter-bound nucleosomes is delayed in a chaperone mutant, and our findings suggest an involvement of HSP90 and HSP70 in this early step in gene induction.


Asunto(s)
Galactoquinasa/genética , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Nucleosomas/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/genética , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Regulación Fúngica de la Expresión Génica/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Activación Transcripcional
10.
J Biol Chem ; 289(9): 5417-35, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24385432
11.
Curr Biol ; 17(7): R233-6, 2007 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-17407749

RESUMEN

Over the past few years we have seen an odd change, or extension, in the use of the word 'epigenetic' when describing matters of gene regulation in eukaryotes. Although it may generally be that it is not worth arguing over definitions, this is true only insofar as the participants in the discussion know what each other means. I believe the altered use of the term carries baggage from the standard definition that can have misleading implications. Here I wish to probe our use of language in this way, and to show how such a discussion leads to some more general considerations concerning gene regulation.


Asunto(s)
Epigénesis Genética , Acetilación , Animales , Metilación de ADN , Regulación de la Expresión Génica , Histonas/metabolismo , Humanos , Metilación , Nucleosomas/metabolismo , Semántica
12.
Curr Biol ; 16(12): R459-62, 2006 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-16782001

RESUMEN

A recent experiment has replaced Cro, a crucial component of lambda's genetic switch, with the lac repressor (plus two lac operators). The resulting hybrid phage is viable, but a subtle phenotypic defect explains a puzzle concerning the workings of the switch.


Asunto(s)
Bacteriófago lambda/genética , Proteínas de Unión al ADN/metabolismo , Regulación Viral de la Expresión Génica , Proteínas Represoras/metabolismo , Proteínas Virales/metabolismo , Bacteriófago lambda/fisiología , Proteínas de Unión al ADN/genética , Evolución Molecular , Modelos Genéticos , Regiones Operadoras Genéticas , Proteínas Represoras/genética , Proteínas Virales/genética , Proteínas Reguladoras y Accesorias Virales
13.
FASEB J ; 27(1): 1-2, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23284163
15.
Curr Biol ; 14(18): 1675-9, 2004 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-15380071

RESUMEN

Eukaryotic transcriptional activators work by recruiting to DNA the transcriptional machinery, including protein complexes required for chromatin modification, transcription initiation, and elongation. Which of these complexes must be directly recruited to trigger transcription? We test various "non-classical" transcription activators (comprising a component of the transcriptional machinery fused to a DNA binding domain) for their abilities to activate transcription of a chromosomally integrated reporter in yeast. Among these newly constructed fusion proteins, none efficiently activated transcription when working on its own. However, in several instances transcription was activated by a pair of such fusion proteins tethered to adjacent sites on DNA. In each of these cases, one fusion protein bore a component of the SAGA complex, and the other bore a component of the Mediator complex. Transcription was also activated by certain tripartite fusion proteins comprising a Mediator and a SAGA component fused to a DNA binding domain. The results are consistent with the finding that the classical activator Gal4, working at the GAL1 promoter, activates transcription by (at least in part) independently recruiting SAGA and Mediator.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/fisiología , Genes Reporteros , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes de Fusión , Levaduras
16.
Curr Biol ; 12(11): 930-3, 2002 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-12062058

RESUMEN

In yeast, unlike in higher eukaryotes, transcriptional activators and repressors do not normally work when bound to DNA at large distances (over 500 base pairs) from the gene and, in particular, when positioned downstream of the gene. This restriction is relieved for a transcriptional activator if a gene bearing an activator binding site is placed near a yeast telomere. The explanation proposed is that the folded structure found at the telomere helps appose the DNA-bound activator with proteins binding to the promoter so that recruitment of the transcriptional machinery can be effected "at a distance". Here, we show that a repressor, Tup1, works when tethered to DNA downstream of, and some 1.5-kb from, the gene when the construct is placed near a yeast telomere. The effect, observed with activated as well as basal transcription, is eliminated by deletion of Sir3. These and other results indicate that DNA-tethered Tup1 represses by interacting with some component of the transcriptional machinery binding to the promoter, an interaction that is facilitated by the preformed loop at the telomere.


Asunto(s)
Saccharomyces cerevisiae/genética , Telómero , Secuencia de Bases , Cromatina/genética , Cartilla de ADN , Pruebas de Precipitina
17.
Curr Biol ; 12(11): 934-7, 2002 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-12062059

RESUMEN

Many genes in bacteria and eukaryotes are activated by "regulated recruitment". According to that picture, a transcriptional activator binds cooperatively to DNA with the transcriptional machinery, and the constitutively active polymerase then spontaneously transcribes the gene. An important class of experiments that helped develop this model is called the "activator by-pass" experiment. In one version of such an experiment, the ordinary activator-transcriptional machinery interaction is replaced by a heterologous interaction. For example, fusing any of several DNA binding domains to Gal11, a component of the yeast mediator complex, creates a powerful activator of genes bearing the corresponding DNA binding sites. Here, we describe a simple modification of the yeast transcriptional machinery that extends the success of similar experiments involving other mediator components. The results reinforce parallels between regulation of enzymes involved in transcription and in other cellular processes.


Asunto(s)
Proteínas Fúngicas/fisiología , Proteína de Unión a TATA-Box/antagonistas & inhibidores , Transactivadores/fisiología , Secuencia de Bases , Proteínas Fúngicas/química , Oligonucleótidos , Transactivadores/química
18.
Curr Biol ; 12(21): 1828-32, 2002 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-12419182

RESUMEN

Many yeast genes are distinguished by their specific requirements for different components of the transcriptional machinery. Here we examine four genes that fall into two classes as defined by their dependence on specific components of the transcriptional machinery. We describe a series of hybrid constructs, each of which bears activator binding sites that are associated with a promoter other than that with which they are usually affiliated. We examine expression of these reporters in strains bearing three modifications of the transcriptional machinery. Our results indicate that, in each of these cases, the promoter (and not the activator) determines which components of the transcriptional machinery are required. These and additional results, including those of others, clarify how disparate activators can work at many different promoters.


Asunto(s)
Genes Fúngicos , Regiones Promotoras Genéticas , Transcripción Genética
19.
Cell Rep ; 20(7): 1585-1596, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28813671

RESUMEN

SOX2 and OCT4, in conjunction with KLF4 and cMYC, are sufficient to reprogram human fibroblasts to induced pluripotent stem cells (iPSCs), but it is unclear if they function as transcriptional activators or as repressors. We now show that, like OCT4, SOX2 functions as a transcriptional activator. We substituted SOX2-VP16 (a strong activator) for wild-type (WT) SOX2, and we saw an increase in the efficiency and rate of reprogramming, whereas the SOX2-HP1 fusion (a strong repressor) eliminated reprogramming. We report that, at an early stage of reprogramming, virtually all DNA-bound OCT4, SOX2, and SOX2-VP16 were embedded in putative enhancers, about half of which were created de novo. Those associated with SOX2-VP16 were, on average, stronger than those bearing WT SOX2. Many newly created putative enhancers were transient, and many transcription factor locations on DNA changed as reprogramming progressed. These results are consistent with the idea that, during reprogramming, there is an intermediate state that is distinct from both parental cells and iPSCs.


Asunto(s)
Reprogramación Celular , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteínas Recombinantes de Fusión/genética , Factores de Transcripción SOXB1/genética , Diferenciación Celular , Fibroblastos/citología , Proteína Vmw65 de Virus del Herpes Simple/genética , Proteína Vmw65 de Virus del Herpes Simple/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Activación Transcripcional
20.
Cell Rep ; 20(4): 785-793, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28746865

RESUMEN

How is Polycomb (Pc), a eukaryotic negative regulator of transcription, targeted to specific mammalian genes? Our genome-wide analysis of the Pc mark H3K27me3 in murine cells revealed that Pc is preferentially associated with CpG island promoters of genes that are transcribed at a low level and less so with promoters of genes that are either silent or more highly expressed. Studies of the CpG island promoter of the Kit gene demonstrate that Pc is largely absent when the gene is silent in myeloid cells, as well as when the gene is highly expressed in mast cells. Manipulations that increase transcription in the former case, and reduce it in the latter, increase Pc occupancy. The average negative effect of Pc, we infer, is about 2-fold. We suggest possible biological roles for such negative effects and propose a mechanism by which Pc might be recruited to weakly transcribed genes.


Asunto(s)
Islas de CpG/genética , Proteínas del Grupo Polycomb/metabolismo , Regiones Promotoras Genéticas/genética , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Humanos , Ratones , Células Mieloides/metabolismo , Proteínas del Grupo Polycomb/genética , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA