Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Anal Chem ; 96(25): 10256-10263, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38865612

RESUMEN

Assembling small molecules at liquid/solid interfaces is relatively common and contributes to many unique properties of the interface. However, such an assembling process can be dynamic depending on the concentration of the molecule and the properties of the solid and liquid themselves, which poses serious challenges on the accurate evaluation of the assembling processes. Herein, we report a convenient way for in situ and real-time monitoring of assembling-disassembling of small-molecule surfactants on the surface of microchannels using pulsed streaming potential (SP) measurement based on the variation of surface charge. With this technique, five distinctive kinetic regimes, each responsible for a characteristic molecular behavior, can be differentiated during a typical assembling-disassembling cycle. Significant difference of the assembling-disassembling process was clearly reflected for surfactants with hydrophobic tails of only a two -CH2- difference (C16TAB/C18TAB and D10DAB/D12DAB). The relative SP (Er) value is positively correlated with the molecular weight at a concentration of 0.1 mM for the same kinds of surfactants. Moreover, the assembling kinetics of D10DAB exhibits an "overshoot effect" at high concentration, which means morphology adjustment. The consequences of such assembling/disassembling of these molecules for electrophoretic separation, protein immobilization, and photocatalysis in a microchannel were investigated through dynamic characterization, which proves its potential as a tool for dynamic solid/liquid interface characterization.

2.
Anal Chem ; 96(5): 1913-1921, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38266028

RESUMEN

2D nanosheets (NSs) have been widely used in drug-related applications. However, a comprehensive investigation into the cytotoxicity mechanism linked to the redox activity is lacking. In this study, with cytochrome c (Cyt c) as the model biospecies, the cytotoxicity of 2D NSs was evaluated systematically based on their redox effect with microfluidic techniques. The interface interaction, dissolution, and redox effect of 2D NSs on Cyt c were monitored with pulsed streaming potential (SP) measurement and capillary electrophoresis (CE). The relationship between the redox activity of 2D NSs and the function of Cyt c was evaluated in vitro with Hela cells. The results indicated that the dissolution and redox activity of 2D NSs can be simultaneously monitored with CE under weak interface interactions and at low sample volumes. Both WS2 NSs and MoS2 NSs can reduce Cyt c without significant dissolution, with reduction rates measured at 6.24 × 10-5 M for WS2 NSs and 3.76 × 10-5 M for MoS2 NSs. Furthermore, exposure to 2D NSs exhibited heightened reducibility, which prompted more pronounced alterations associated with Cyt c dysfunction, encompassing ATP synthesis, modifications in mitochondrial membrane potential, and increased reactive oxygen species production. These observations suggest a positive correlation between the redox activity of 2D NSs and their redox toxicity in Hela cells. These findings provide valuable insight into the redox properties of 2D NSs regarding cytotoxicity and offer the possibility to modify the 2D NSs to reduce their redox toxicity for clinical applications.


Asunto(s)
Citocromos c , Molibdeno , Humanos , Células HeLa , Oxidación-Reducción
3.
Anal Chem ; 96(25): 10356-10364, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38863415

RESUMEN

Capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) has proven to be an efficient technique for the separation and detection of charged inorganic, organic, and biochemical analytes. It offers several advantages, including cost-effectiveness, nanoliter injection volume, short analysis time, good separation efficiency, suitability for miniaturization, and portability. However, the routine determination of common inorganic cations (NH4+, K+, Na+, Ca2+, Mg2+, and Li+) and inorganic anions (F-, Cl-, Br-, NO2-, NO3-, PO43-, and SO42-) in water quality monitoring typically exhibits limits of detection of about 0.3-1 µM without preconcentration. This sensitivity often proves insufficient for the applications of CE-C4D in trace analysis situations. Here, we explore methods to push the detection limits of CE-C4D through a comprehensive consideration of signal and noise sources. In particular, we (i) studied the model of C4D and its guiding roles in C4D and CE-C4D, (ii) optimized the bandwidth and noise performance of the current-to-voltage (I-V) converter, and (iii) reduced the noise level due to the strong background signal of the background electrolyte by adaptive differential detection. We characterized the system with Li+; the 3-fold signal-to-noise (S/N) detection limit for Li+ was determined at 20 nM, with a linear range spanning from 60 nM to 1.6 mM. Moreover, the optimized CE-C4D method was applied to the analysis of common mixed inorganic cations (K+, Na+, Ca2+, Mg2+, and Li+), anions (F-, Cl-, Br-, NO2-, NO3-, PO43-, and SO42-), toxic halides (BrO3-) and heavy metal ions (Pb2+, Cd2+, Cr3+, Co2+, Ni2+, Zn2+, and Cu2+) at trace concentrations of 200 nM. All electropherograms showed good S/N ratios, thus proving its applicability and accuracy. Our results have shown that the developed CE-C4D method is feasible for trace ion analysis in water quality control.

4.
Analyst ; 149(11): 3263, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38738731

RESUMEN

Correction for 'A compact and high-performance setup of capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D)' by Lin Li et al., Analyst, 2024, https://doi.org/10.1039/d4an00354c.

5.
Analyst ; 149(10): 3034-3040, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38624147

RESUMEN

Capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) has the advantages of high throughput (simultaneous detection of multiple ions), high separation efficiency (higher than 105 theoretical plates) and rapid analysis capability (less than 5 min for common inorganic ions). A compact CE-C4D system is ideal for water quality control and on-site analysis. It is suitable not only for common cations (e.g. Na+, K+, Li+, NH4+, Ca2+, etc.) and anions (e.g. Cl-, SO42-, BrO3-, etc.) but also for some ions (e.g. lanthanide ions, Pb2+, Cd2+, etc.) that require complex derivatization procedures to be detected by ion chromatography (IC). However, an obvious limitation of the CE-C4D method is that its sensitivity (e.g. 0.3-1 µM for common inorganic ions) is often insufficient for trace analysis (e.g. 1 ppb or 20 nM level for common inorganic ions) without preconcentration. For this technology to become a powerful and routine analytical technique, the system should be made compact while maintaining trace analysis sensitivity. In this study, we developed an all-in-one version of the CE-C4D instrument with custom-made modular components to make it a convenient, compact and high-performance system. The system was designed using direct digital synthesis (DDS) technology to generate programmable sinusoidal waveforms with any frequency for excitation, a kilovolt high-voltage power supply for capillary electrophoresis separation, and an "effective" differential C4D cell with a low-noise circuitry for high-sensitivity detection. We characterized the system with different concentrations of Cs+, and even a low concentration of 20 nM was detectable without preconcentration. Moreover, the optimized CE-C4D setup was applied to analyse mixed ions at a trace concentration of 200 nM with excellent signal-to-noise ratios. In typical applications, the limits of detection based on the 3σ criterion (without baseline filtering) were 9, 10, 24, 5, and 12 nM for K+, Cs+, Li+, Ca2+, and Mg2+, respectively, and about 7, 6, 6 and 6 nM for Br-, ClO4-, BrO3- and SO42-, respectively. Finally, the setup was also applied for the analysis of all 14 lanthanide ions and rare-earth minerals, and it showed an improvement in sensitivity by more than 25 times.

6.
Anal Chem ; 95(4): 2146-2151, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36642960

RESUMEN

We describe a 3-in-1 detector for simultaneous contactless conductivity (C4D), ultraviolet absorbance (UV-AD), and laser-induced fluorescence (LIF) measurements on a single detection point for capillary electrophoresis (CE). A key component of the detector was a rectangular detector head that was assembled with four 3D-printed parts. Two parts covering the detector head to function as a Faraday cage were fused deposition modeling printed using an electrically conductive material. The other two parts in between the conductive parts were stereolithography (SLA) printed with high-resolution (50 µm) constructions on the surface. After assembling the two SLA printed parts, several cavities were built with the surface constructions. Two electrodes and a Faraday shield for C4D were cast by injecting molten Wood's metal into the cavities. For UV-AD, a slit (100 µm width) was created by putting together two grooves (50 µm depth) on the surface of the SLA printed parts. A 255 nm UV-LED was used as the light source. The effective path length and stray light for a 50 µm id capillary were 39 µm and 13%, which were superior to those of other reported 3D-printed AD detectors. Confocal LIF detection was conducted by using an objective lens to focus the laser on the capillary via a through-hole. The detector was used to detect model analytes, including inorganic and organic ions, and fluorescein isothiocyanate labeled amino acids in a signal-run CE separation. In detecting fluorescein, LODs were 1.3 µM (C4D), 2.0 µM (UV-AD), and 1 nM (LIF). The calibration ranges covered from 0.01 µM to 500 µM.

7.
Anal Chem ; 95(35): 13391-13399, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37610722

RESUMEN

Early detection of foodborne bacteria is urgently needed to ensure food quality and to avoid the outbreak of foodborne bacterial diseases. Here, a kind of metal-organic framework (Zr-MOF) modified with Pt nanoparticles (Pt-PCN-224) was designed as a peroxidase-like signal amplifier for microfluidic biosensing of foodborne bacteria. Taking Escherichia coli (E. coli) O157:H7 as a model, a linear range from 2.93 × 102 to 2.93 × 108 CFU/mL and a limit of detection of 2 CFU/mL were obtained. The whole detection procedure was integrated into a single microfluidic chip. Water, milk, and cabbage samples were successfully detected, showing consistency with the results of the standard culture method. Recoveries were in the range from 90 to 110% in spiked testing. The proposed microfluidic biosensor realized the specific and sensitive detection of E. coli O157:H7 within 1 h, implying broad prospects of MOF with biomimetic enzyme activities for biosensing.


Asunto(s)
Escherichia coli O157 , Enfermedades Transmitidas por los Alimentos , Humanos , Microfluídica , Bacterias , Amplificadores Electrónicos , Biomimética
8.
Anal Chem ; 94(23): 8474-8482, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35652329

RESUMEN

A circular nonuniform electric field strategy coupled with gel electrophoresis was proposed to control the precise separation and efficient concentration of nano- and microparticles. The circular nonuniform electric field has the feature of exponential increase in the electric field intensity along the radius, working with three functional zones of migration, acceleration, and concentration. The distribution form of electric field lines is regulated in functional zones to control the migration behaviors of particles for separation and concentration by altering the relative position of the ring electrode (outside) and rodlike electrode (inner). The circular nonuniform electric field promotes the target-type and high-precision separation of nanoparticles based on the difference in charge-to-size ratio. The concentration multiple of nanoparticles is also controlled randomly with the alternation of radius, taking advantage of vertical extrusion and concentric converging of the migration path. This work provides a brand new insight into the simultaneous separation and concentration of particles and is promising for developing a versatile tool for the separation and preparation of various samples instead of conventional methods.


Asunto(s)
Electricidad , Nanopartículas , Electrodos , Electroforesis/métodos , Tamaño de la Partícula
9.
Anal Chem ; 94(33): 11500-11507, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35943850

RESUMEN

The development of new technologies for the separation, selection, and isolation of microparticles such as rare target cells, circulating tumor cells, cancer stem cells, and immune cells has become increasingly important in the last few years. Microparticle separation technologies are usually applied to the analysis of disease-associated cells, but these procedures often face a cell separation problem that is often insufficient for single specific cell analyses. To overcome these limitations, a highly accurate size-based microparticle separation technique, herein called "rotating magnetic chromatography", is proposed in this work. Magnetic nanoparticles, placed in a microfluidic separation channel, are forced to move in well-defined trajectories by an external magnetic field, colliding with microparticles that are in this way separated on the basis of their dimensions with high accuracy and reproducibility. The method was optimized by using fluorescein isothiocyanate-modified polystyrene particles (chosen as a reference standard) and then applied to the analysis of cancer cells like Hep-3B and SK-Hep-1, allowing their fast and high-resolution chromatographic separation as a function of their dimensions. Due to its unmatched sub-micrometer cell separation capabilities, RMC can be considered a break-through technique that can unlock new perspectives in different scientific fields, that is, in medical oncology.


Asunto(s)
Cromatografía , Magnetismo , Separación Celular , Fenómenos Magnéticos , Poliestirenos/química , Reproducibilidad de los Resultados
10.
Mikrochim Acta ; 188(3): 82, 2021 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-33586055

RESUMEN

A uniform Schiff base network (SNW) film was synthesized in situ in a controllable way through continuous flow of reactants inside the capillary. The properties and application of the as-prepared capillary was investigated in capillary electrochromatography. The effects of reaction monomer concentration and reaction time on coating thickness were studied by SEM. The results show that the reaction condition has a significant influence on the morphology and thickness of the SNW films. The thickness of the film can be controlled by changing the concentration of reaction solution and reaction time. Capillaries coated under different conditions were employed to separate four nucleotides by capillary electrochromatography, which demonstrated significant variation of migration time, peak order, and separation efficiency. Analytes containing nitrogen heterocycle structures, such as nucleotides, methylimidazole isomers, and ß-lactam antibiotics, were successfully separated with the prepared open-tubular columns. Under the selected separation conditions, theoretical plate number of four nucleotides is in a range 45,237-104,505 plates·m-1, and the resolutions are 1.98-8.07. A resolution of 1.75 is obtained for methylimidazole isomers. The nucleotides in a real sample, chicken essence seasoning, were determined using the prepared capillary column with satisfactory recoveries in the range 95 to 105%.


Asunto(s)
Polímeros/química , Bases de Schiff/química , Antibacterianos/análisis , Electrocromatografía Capilar/métodos , Condimentos/análisis , Imidazoles/análisis , Nucleótidos/análisis , Polímeros/síntesis química , Porosidad , Bases de Schiff/síntesis química , beta-Lactamas/análisis
11.
Electrophoresis ; 41(15): 1273-1279, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32358896

RESUMEN

Mutations in the potassium channel genes may be linked to the development of epilepsy and affect the blood potassium levels. Therefore, accurate determination of potassium in the blood will be critical to diagnose the cause of epilepsy. CE is a competent technique for the fast detection of multiple ions, but complicated matrices of a blood sample may cause significant variation of migration times and the peak shape. In this work, a procedure for rapid stabilization of the capillary inner surface through preflushing of a blood sample was employed. The process takes only 40 min for a capillary and then it can be used for more than 2 weeks. No pretreatment of the blood sample or other surface modification of the capillary is needed for the analysis. The RSDs of the migration time and peak area were reduced to 1.5 and 5.1% from 12.6 and 14.5%, respectively. The proposed method has been successfully applied to the determination of the potassium contents in the blood sample of patients with epilepsy at different stages. The recoveries of potassium ions in these blood samples are in a range from 86.5 to 104.5%.


Asunto(s)
Electroforesis Capilar/métodos , Epilepsia/diagnóstico , Potasio/sangre , Recolección de Muestras de Sangre , Humanos , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados
12.
Molecules ; 25(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32752084

RESUMEN

Flavonoids are the main constituents of Goji berries and have good biological and pharmacological activities. The mixed-mode macroporous adsorption resins (MARs) for purification of flavonoids from Goji berries through computer-assisted calculation of the molecular size of flavonoids and the precise matching of MAR physical and chemical properties was firstly developed in the present study. Ten varieties of MARs with suitable molecular dimensions and polarities were used for investigating the adsorption/desorption behaviors of the flavonoids. Both AUKJ-1 and BWKX-1 showed higher separation efficiency than other MARs and then were mixed in different ratios to constitute a mixed-mode macroporous adsorption resin to obtain the optimal adsorption phase. Under optimal conditions, total flavonoid content of purified flavonoid (p-FLA) extract increased from 0.97% to 36.88% after one purification. The p-FLA extract from Goji berries significantly improved the expression of six genes with anti-aging effects and played an important role in aging-related Alzheimer's disease by down-regulating Aß expression.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Flavonoides/química , Lycium/química , Resinas Sintéticas/química , Adsorción , Envejecimiento/efectos de los fármacos , Péptidos beta-Amiloides/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatografía Líquida de Alta Presión , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Expresión Génica/efectos de los fármacos , Humanos , Lycium/metabolismo , Extractos Vegetales/química , Porosidad
13.
Anal Chem ; 91(24): 15670-15677, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31710814

RESUMEN

Exploration of simple and universal methods to quantitatively measure nanoparticle (NP)-protein interaction is of great importance. In this work, pulsed streaming potential (SP) measurement has been used to evaluate the interaction between NPs and proteins within microchannels. Graphene oxide (GO) and SiO2 NPs were selected to represent two kinds of NPs. Lysozyme and common blood proteins, including albumin V, γ-globulins, and fibrinogen, were used as model proteins. The linear relationship between the initial adsorption rate (S = dEr/dt) and the concentration of proteins was observed. Combined with the Hill equation, the microscopic dissociation constant (KD) and the Hill coefficient (n) between NPs and proteins were calculated based on the relationship between S and the concentration of each protein. The concentration of free proteins which have not interacted with the NPs in the NPs-protein mixture could also be measured. The influence of pH, conductivity, and ionic strengths of the incubation buffer on the interaction between GO and lysozyme was evaluated based on the constant KD. The interaction intensity between NPs and proteins was defined as charge neutralization efficiency QC, which could be calculated from the value of S. It takes only 150 s to get the whole set of data under the optimized experiment parameters. The measurement solely depends on the surface charge, no intrinsic fluorescence is required for either the NPs or the proteins, and no labeling or immobilization process is involved as well.


Asunto(s)
Albúminas/metabolismo , Fibrinógeno/metabolismo , Grafito/química , Muramidasa/metabolismo , Nanopartículas/química , Dióxido de Silicio/química , gammaglobulinas/metabolismo , Adsorción , Albúminas/química , Fibrinógeno/química , Grafito/metabolismo , Humanos , Muramidasa/química , Nanopartículas/metabolismo , Concentración Osmolar , Dióxido de Silicio/metabolismo , gammaglobulinas/química
14.
Electrophoresis ; 40(16-17): 2165-2171, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30861170

RESUMEN

Micro free flow electrophoresis (µFFE) is a valuable technique capable of high throughput rapid microscale electrophoretic separation along with mild operating conditions. However, the stream flow separation nature of free flow electrophoresis affects its separation performance with additional stream broadening due to sample stream deflection. To reduce stream broadening and enhance separation performance of µFFE, we presented a simple microfluidic device that enables injection bandwidth control. A pinched injection was formed in the reported µFFE system using operating buffer at sample flow rate ratio (r) setting. Initial bandwidth at the entrance of separation chamber can be shrunk from 800 to 30 µm when r increased from 1 to 256. Stream broadening at the exit of separation chamber can be reduced by about 96% when r increased from 4 to 128, according to both theoretical and experimental results. Moreover, the separation resolution for a dye mixture was enhanced by a factor of 4 when r increased from 16 to 128, which corresponded to an 80% reduction in sample initial bandwidth. Furthermore, a similar enhancement on amino acids separation was obtained by using injection control in the reported µFFE device and readily integrated into online/offline sample preparation and/or downstream analysis procedures.


Asunto(s)
Electroforesis por Microchip/instrumentación , Electroforesis por Microchip/métodos , Aminoácidos/análisis , Aminoácidos/aislamiento & purificación , Colorantes/análisis , Colorantes/aislamiento & purificación , Diseño de Equipo , Modelos Químicos
15.
Electrophoresis ; 40(4): 499-507, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30467879

RESUMEN

Aflatoxin contamination in agricultural products poses a great threat to humans and livestock. The aim of this study was to establish a simple, rapid, highly sensitive, and inexpensive method for the simultaneous detection of aflatoxin B1 , B2 , G1 , and G2 in agricultural products. We used a vortex assisted low density solvent-microextraction (VALDS-ME) technique for sample preconcentration and sample detection was achieved with a CE-LIF method. Aflatoxins were separated in an uncoated fused-silica capillary with the MEKC mode and were excited by a 355 nm UV laser to produce native fluorescence for detection. The obtained LOD and LOQ for the four aflatoxins were in the range of 0.002-0.075 and 0.007-0.300 µg/L, respectively, and the analysis time was within 6.5 min. Using the established method, aflatoxins were screened in naturally contaminated dairy cattle feed samples including alfalfa, bran, and corn kernel. The result shows that the alfalfa and bran samples were contaminated with aflatoxins to varying degrees. Compared with other analytical techniques for aflatoxin screening in agricultural products, this CE-LIF method combined with VALDS-ME preconcentration technique is simple, rapid, highly efficient, and inexpensive.


Asunto(s)
Aflatoxinas/análisis , Alimentación Animal/análisis , Cromatografía Capilar Electrocinética Micelar/métodos , Microextracción en Fase Líquida/métodos , Contaminación de Alimentos/análisis , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados
16.
Anal Chem ; 88(21): 10437-10444, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27696821

RESUMEN

The deposition kinetics of graphene oxide (GO) onto poly(ethylene imine) (PEI) layer was characterized in situ with pulsed streaming potential (SP) measurement, and it was found that the initial rate constant (ki) was dependent on the size of GO with same surface charge density at a fixed concentration under controlled experimental conditions. Assuming the deposition was controlled by diffusion at the initial stage, ki is proportional to Rh-2/3, where Rh is the hydrodynamic radius. By flushing a GO solution through a capillary coated with PEI, the initial change rate of relative SP (dEr/dt) was obtained in 20 s and ki was measured with five different concentrations in about 2 min. Three GO samples of different sizes obtained from the same batch of raw material were characterized with pulsed SP to get ki values, and their sizes were verified with atomic force microscopy and dynamic light scattering. The experimental results are consistent with the predicted effects of the size of NPs on their deposition kinetics.

17.
Anal Chem ; 86(1): 729-36, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24274685

RESUMEN

A high-resolution, rapid, and economical hydrodynamic chromatographic (HDC) method for large DNA separations in free solution was developed using narrow (5 µm diameter), bare open capillaries. Size-based separation was achieved in a chromatographic format with larger DNA molecules being eluting faster than smaller ones. Lambda DNA Mono Cut Mix was baseline-separated with the percentage resolutions generally less than 9.0% for all DNA fragments (1.5 to 48.5 kbp) tested in this work. High efficiencies were achieved for large DNA from this chromatographic technique, and the number of theoretical plates reached 3.6 × 10(5) plates for the longest (48.5 kbp) and 3.7 × 10(5) plates for the shortest (1.5 kbp) fragments. HDC parameters and performances were also discussed. The method was further applied for fractionating large DNA fragments from real-world samples (SacII digested Arabidopsis plant bacterial artificial chromosome (BAC) DNA and PmeI digested Rice BAC DNA) to demonstrate its feasibility for BAC DNA finger printing. Rapid separation of PmeI digested Rice BAC DNA covering from 0.44 to 119.041 kbp was achieved in less than 26 min. All DNA fragments of these samples were baseline separated in narrow bare open capillaries, while the smallest fragment (0.44 kbp) was missing in pulsed-field gel electrophoresis (PFGE) separation mode. It is demonstrated that narrow bare open capillary chromatography can realize a rapid separation for a wide size range of DNA mixtures that contain both small and large DNA fragments in a single run.


Asunto(s)
Proteínas de Arabidopsis/análisis , ADN de Plantas/análisis , Electroforesis Capilar/economía , Electroforesis en Gel de Campo Pulsado/economía , Hidrodinámica , Electroforesis Capilar/normas , Electroforesis en Gel de Campo Pulsado/normas , Factores de Tiempo
18.
Anal Chem ; 86(4): 1958-64, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24495233

RESUMEN

Here, we construct an open-channel on-chip electroosmotic pump capable of generating pressures up to ∼170 bar and flow rates up to ∼500 nL/min, adequate for high performance liquid chromatographic (HPLC) separations. A great feature of this pump is that a number of its basic pump units can be connected in series to enhance its pumping power; the output pressure is directly proportional to the number of pump units connected. This additive nature is excellent and useful, and no other pumps can work in this fashion. We demonstrate the feasibility of using this pump to perform nanoflow HPLC separations; tryptic digests of bovine serum albumin (BSA), transferrin factor (TF), and human immunoglobulins (IgG) are utilized as exemplary samples. We also compare the performance of our electroosmotic (EO)-driven HPLC with Agilent 1200 HPLC; comparable efficiencies, resolutions, and peak capacities are obtained. Since the pump is based on electroosmosis, it has no moving parts. The common material and process also allow this pump to be integrated with other microfabricated functional components. Development of this high-pressure on-chip pump will have a profound impact on the advancement of lab-on-a-chip devices.


Asunto(s)
Electroósmosis/métodos , Dispositivos Laboratorio en un Chip , Nanotecnología/métodos , Animales , Bovinos , Cromatografía Líquida de Alta Presión/instrumentación , Cromatografía Líquida de Alta Presión/métodos , Electroósmosis/instrumentación , Humanos , Inmunoglobulina G/análisis , Nanotecnología/instrumentación , Albúmina Sérica Bovina/análisis
19.
Talanta ; 274: 126053, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599121

RESUMEN

Borax is strictly regulated in the food processing and pharmaceutical industry due to its physiological toxicity, and the development of a direct analytical method is essential for effectively monitoring the borax abuse. In this work, the fluorescence properties of flavonoids, including flavones, isoflavones and flavonols, were systematically investigated from aqueous to borax solutions, and it was found that the weak intrinsic fluorescence of flavonols could be pervasively sensitized by borax. A natural flavonol, morin, was subsequently chosen as a representative probe to develop a turn-on fluorescence sensing method for borax analysis, which achieved a linear response spanning four orders of magnitude with a detection limit of 1.07 µM (0.22 µg mL-1 in terms of Na2B4O7 content). Furthermore, a smartphone-assisted paper-based test device was designed and constructed by 3D printing technology. Using morin-impregnated test strips as the carrier, the borax could be visually detected by the RGB signals of the captured images, with a detection limit of 0.13 mM (27.05 µg mL-1 for Na2B4O7). Combining ion exchange treatment for food samples and sodium periodate oxidation for drug samples, the developed methods were successfully applied for the direct analysis of borax in various products with the recoveries of 86.9-106.3% for traditional fluorescence analysis and 82.7-108.8% for smartphone-assisted fluorescence sensing. The fluorescence property of the morin-borax system was studied using time-dependent density functional theory, and the sensing mechanism was discussed in conjunction with experimental research.


Asunto(s)
Flavonas , Flavonoides , Flavonoles , Papel , Teléfono Inteligente , Espectrometría de Fluorescencia , Flavonoles/análisis , Espectrometría de Fluorescencia/métodos , Flavonoides/análisis , Boratos/química , Límite de Detección , Colorantes Fluorescentes/química , Fluorescencia
20.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284812

RESUMEN

Quartz tuning forks and qPlus-based force sensors offer an alternative approach to silicon cantilevers for investigating tip-sample interactions in scanning probe microscopy. The high-quality factor (Q) and stiffness of these sensors prevent the tip from jumping to the contact, even at sub-nanometer amplitude. The qPlus configuration enables simultaneous scanning tunneling microscopy and atomic force microscopy, achieving spatial resolution and spectroscopy at the subatomic level. However, to enable precise measurement of tip-sample interaction forces, confidence in these measurements is contingent upon the accurate calibration of the spring constant and oscillation amplitude of the sensor. Here, we have developed a method called astigmatic displacement microscopy with picometer sensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA