Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Bioorg Med Chem Lett ; 47: 128214, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34166782

RESUMEN

A novel series of IDO1 inhibitors have been identified with good IDO1 Hela cell and human whole blood activity. These inhibitors contain an indoline or a 3-azaindoline scaffold. Their structure-activity-relationship studies have been explored. Compounds 37 and 41 stood out as leads due to their good potency in IDO1 Hela assay, good IDO1 unbound hWB IC50s, reasonable unbound clearance, and good MRT in rat and dog PK studies.


Asunto(s)
Compuestos Aza/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indoles/farmacología , Animales , Compuestos Aza/síntesis química , Compuestos Aza/química , Perros , Relación Dosis-Respuesta a Droga , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Indoles/síntesis química , Indoles/química , Masculino , Estructura Molecular , Ratas , Ratas Wistar , Relación Estructura-Actividad
2.
Bioorg Med Chem ; 22(7): 2303-10, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24588962

RESUMEN

The ribonucleotide reductase (RNR) enzyme is a heteromer of RRM1 and RRM2 subunits. The active enzyme catalyzes de novo reduction of ribonucleotides to generate deoxyribonucleotides (dNTPs), which are required for DNA replication and DNA repair processes. Complexity in the generation of physiologically relevant, active RRM1/RRM2 heterodimers was perceived as limiting to the identification of selective RRM1 inhibitors by high-throughput screening of compound libraries and led us to seek alternative methods to identify lead series. In short, we found that gemcitabine, as its diphosphate metabolite, represents one of the few described active site inhibitors of RRM1. We herein describe the identification of novel 5'-amino gemcitabine analogs as potent RRM1 inhibitors through in-cell phenotypic screening.


Asunto(s)
Desoxicitidina/análogos & derivados , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Línea Celular Tumoral , Desoxicitidina/química , Desoxicitidina/farmacología , Relación Dosis-Respuesta a Droga , Ensayos Analíticos de Alto Rendimiento , Humanos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Ribonucleósido Difosfato Reductasa , Relación Estructura-Actividad , Gemcitabina
3.
Chem Biodivers ; 9(10): 2159-74, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23081916

RESUMEN

In northeastern North America, Zygiella atrica often build their orb webs near the ocean. We analyzed individual field-built Z. atrica webs to determine if organic low-molecular-mass solutes (LMM) in their sticky droplets showed any unusual features not previously seen in orb webs of other species living in less salty environments. While two of the three most abundant organic LMM (putrescine (butane-1,4-diamine) and GABamide (4-aminobutanamide)) are already well-known from webs of inland spiders, the third major LMM, ß-alaninamide (3-aminopropanamide), a homolog of GABamide, has not been detected in sticky droplets from any other araneoid spiders (27 species). It remains to be established, however, whether or not use of ß-alaninamide is related to proximity to saltwater. We observed variability in organic LMM composition in Z. atrica webs that appeared to be influenced more by an undetermined factor associated with different collecting locations and/or collection dates than by different genders or instars. Shifts in composition when adult females were transferred from the field to the laboratory were also observed. Structural similarities and inverse correlations among ß-alaninamide, GABamide, and N-acetylputrescine suggest that they may form a series of LMM fulfilling essentially the same, as yet unknown, role in the webs of those species in which they occur.


Asunto(s)
Alanina/química , Amidas/química , Seda/química , Animales , Óxido de Deuterio/química , Espectroscopía de Resonancia Magnética , Putrescina/química , Arañas/química
4.
J Med Chem ; 65(8): 6001-6016, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35239336

RESUMEN

3,3-Disubstituted oxetanes have been utilized as bioisosteres for gem-dimethyl and cyclobutane functionalities. We report the discovery of a novel class of oxetane indole-amine 2,3-dioxygenase (IDO1) inhibitors suitable for Q3W (once every 3 weeks) oral and parenteral dosing. A diamide class of IDO inhibitors was discovered through an automated ligand identification system (ALIS). Installation of an oxetane and fluorophenyl dramatically improved the potency. Identification of a biaryl moiety as an unconventional amide isostere addressed the metabolic liability of amide hydrolysis. Metabolism identification (Met-ID)-guided target design and the introduction of polarity resulted in the discovery of potent IDO inhibitors with excellent pharmacokinetic (PK) profiles in multiple species. To enable rapid synthesis of the key oxetane intermediate, a novel oxetane ring cyclization was also developed, as well as optimization of a literature route on kg scale. These IDO inhibitors may enable unambiguous proof-of-concept testing for the IDO1 inhibition mechanism for oncology.


Asunto(s)
Inhibidores Enzimáticos , Éteres Cíclicos , Amidas , Ciclización , Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo
5.
ACS Med Chem Lett ; 12(9): 1435-1440, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34531952

RESUMEN

Herein the discovery of potent IDO1 inhibitors with low predicted human dose is discussed. Metabolite identification (MetID) and structural data were used to strategically incorporate cyclopropane rings into this tetrahydronaphthyridine series of IDO1 inhibitors to improve their metabolic stability and potency. Enabling synthetic chemistry was developed to construct these unique fused cyclopropyl compounds, leading to inhibitors with improved pharmacokinetics and human whole blood potency and a predicted human oral dose as low as 9 mg once daily (QD).

6.
ACS Med Chem Lett ; 12(9): 1380-1388, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34527178

RESUMEN

Recent data suggest that the inhibition of arginase (ARG) has therapeutic potential for the treatment of a number of indications ranging from pulmonary and vascular disease to cancer. Thus, high demand exists for selective small molecule ARG inhibitors with favorable druglike properties and good oral bioavailability. In light of the significant challenges associated with the unique physicochemical properties of previously disclosed ARG inhibitors, we use structure-based drug design combined with a focused optimization strategy to discover a class of boronic acids featuring a privileged proline scaffold with superior potency and oral bioavailability. These compounds, exemplified by inhibitors 4a, 18, and 27, demonstrated a favorable overall profile, and 4a was well tolerated following multiple days of dosing at concentrations that exceed those required for serum arginase inhibition and concomitant arginine elevation in a syngeneic mouse carcinoma model.

7.
ACS Med Chem Lett ; 12(11): 1678-1688, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34795856

RESUMEN

Comprehensive synthetic strategies afforded a diverse set of structurally unique bicyclic proline-containing arginase inhibitors with a high degree of three-dimensionality. The analogs that favored the Cγ-exo conformation of the proline improved the arginase potency over the initial lead. The novel synthetic strategies reported here not only enable access to previously unknown stereochemically complex proline derivatives but also provide a foundation for the future synthesis of bicyclic proline analogs, which incorporate inherent three-dimensional character into building blocks, medicine, and catalysts and could have a profound impact on the conformation of proline-containing peptides and macrocycles.

8.
ACS Med Chem Lett ; 12(3): 389-396, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33738066

RESUMEN

Indoleamine-2,3-dioxygenase-1 (IDO1) has emerged as an attractive target for cancer immunotherapy. An automated ligand identification system screen afforded the tetrahydroquinoline class of novel IDO1 inhibitors. Potency and pharmacokinetic (PK) were key issues with this class of compounds. Structure-based drug design and strategic incorporation of polarity enabled the rapid improvement on potency, solubility, and oxidative metabolic stability. Metabolite identification studies revealed that amide hydrolysis in the D-pocket was the key clearance mechanism for this class. Strategic survey of amide isosteres revealed that carbamates and N-pyrimidines, which maintained exquisite potencies, mitigated the amide hydrolysis issue and led to an improved rat PK profile. The lead compound 28 is a potent IDO1 inhibitor, with clean off-target profiles and the potential for quaque die dosing in humans.

9.
ACS Med Chem Lett ; 11(8): 1548-1554, 2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32832022

RESUMEN

Indoleamine-2,3-dioxygenase 1 (IDO1) inhibition and its combination with immune checkpoint inhibitors like pembrolizumab have drawn considerable attention from both academia and the pharmaceutical industry. Here, we describe the discovery of a novel class of highly potent IDO1 heme-displacing inhibitors featuring a unique bicyclo[1.1.1]pentane motif. Compound 1, evolving from an ALIS (automated ligand identification system) hit, exhibited excellent potency but lacked the desired pharmacokinetic profile due to extensive amide hydrolysis of the benzamide moiety. Replacing the central phenyl ring in 1 with a bicyclo[1.1.1]pentane bioisostere effectively circumvented the amide hydrolysis issue, resulting in the discovery of compound 2 with a favorable overall profile such as excellent potency, selectivity, pharmacokinetics, and a low predicted human dose.

10.
ACS Med Chem Lett ; 10(11): 1530-1536, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31749906

RESUMEN

Checkpoint inhibitors have demonstrated unprecedented efficacy and are evolving to become standard of care for certain types of cancers. However, low overall response rates often hamper the broad utility and potential of these breakthrough therapies. Combination therapy strategies are currently under intensive investigation in the clinic, including the combination of PD-1/PD-L1 agents with IDO1 inhibitors. Here, we report the discovery of a class of IDO1 heme-binding inhibitors featuring a unique amino-cyclobutarene motif, which was discovered through SBDD from a known and weakly active inhibitor. Subsequent optimization efforts focused on improving metabolic stability and were greatly accelerated by utilizing a robust SNAr reaction of a facile nitro-furazan intermediate to quickly explore different polar side chains. As a culmination of these efforts, compound 16 was identified and demonstrated a favorable overall profile with superior potency and selectivity. Extensive studies confirmed the chemical stability and drug-like properties of compound 16, rendering it a potential drug candidate.

11.
Tetrahedron ; 64(35): 8045-8051, 2008 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-19710906

RESUMEN

Sequential exposure of a zinc-organometallic intermediate, generated through a zinc carbenoid-mediated chain extension reaction of a beta-keto carbonyl, to trimethylsilylchloride and iodine provided regioselective formation of an alpha-iodomethyl-gamma-keto carbonyl. The iodomethyl functionality can be further manipulated to provide side chains that are potential mimics of alpha-amino acid side chains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA