Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Environ Sci Technol ; 58(22): 9669-9678, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38771965

RESUMEN

In subsurface environments, Fe(II)-bearing clay minerals can serve as crucial electron sources for O2 activation, leading to the sequential production of O2•-, H2O2, and •OH. However, the observed •OH yields are notably low, and the underlying mechanism remains unclear. In this study, we investigated the production of oxidants from oxygenation of reduced Fe-rich nontronite NAu-2 and Fe-poor montmorillonite SWy-3. Our results indicated that the •OH yields are dependent on mineral Fe(II) species, with edge-surface Fe(II) exhibiting significantly lower •OH yields compared to those of interior Fe(II). Evidence from in situ Raman and Mössbauer spectra and chemical probe experiments substantiated the formation of structural Fe(IV). Modeling results elucidate that the pathways of Fe(IV) and •OH formation respectively consume 85.9-97.0 and 14.1-3.0% of electrons for H2O2 decomposition during oxygenation, with the Fe(II)edge/Fe(II)total ratio varying from 10 to 90%. Consequently, these findings provide novel insights into the low •OH yields of different Fe(II)-bearing clay minerals. Since Fe(IV) can selectively degrade contaminants (e.g., phenol), the generation of mineral Fe(IV) and •OH should be taken into consideration carefully when assessing the natural attenuation of contaminants in redox-fluctuating environments.


Asunto(s)
Radical Hidroxilo , Minerales , Radical Hidroxilo/química , Minerales/química , Hierro/química , Arcilla/química , Oxígeno/química , Peróxido de Hidrógeno/química , Oxidación-Reducción , Silicatos de Aluminio/química , Bentonita/química
2.
Environ Sci Technol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934384

RESUMEN

Clay minerals are ubiquitous in subsurface environments and have long been recognized as having a limited or negligible impact on the fate of arsenic (As) due to their negatively charged surfaces. Here, we demonstrate the significant role of kaolinite (Kln), a pervasive clay mineral, in enhancing As(V) immobilization during ferrous iron (Fe(II)) oxidation at near-neutral pH. Our results showed that Fe(II) oxidation alone was not capable of immobilizing As(V) at relatively low Fe/As molar ratios (≤2) due to the generation of Fe(III)-As(V) nanocolloids that could still migrate easily as truly dissolved As did. In the presence of kaolinite, dissolved As(V) was significantly immobilized on the kaolinite surfaces via forming Kln-Fe(III)-As(V) ternary precipitates, which had large sizes (at micrometer levels) to reduce the As mobility. The kaolinite-induced heterogeneous pathways for As(V) immobilization involved Fe(II) adsorption, heterogeneous oxidation of adsorbed Fe(II), and finally heterogeneous nucleation/precipitation of Fe(III)-As(V) phases on the edge surfaces of kaolinite. The surface precipitates were mixtures of amorphous basic Fe(III)-arsenate and As-rich hydrous ferric oxide. Our findings provide new insights into the role of clay minerals in As transformation, which is significant for the fate of As in natural and engineered systems.

3.
J Environ Sci (China) ; 145: 28-49, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38844322

RESUMEN

Microbial fuel cells (MFCs) have become more prevalent in groundwater remediation due to their capacity for power generation, removal of pollution, ease of assembly, and low secondary contamination. It is currently being evaluated for practical application in an effort to eliminate groundwater pollution. However, a considerable majority of research was conducted in laboratories. But the operational circumstances including anaerobic characteristics, pH, and temperature vary at different sites. In addition, the complexity of contaminants and the positioning of MFCs significantly affect remediation performance. Taking the aforementioned factors into consideration, this review summarizes a bibliography on the application of MFCs for the remediation of groundwater contamination during the last ten decades and assesses the impact of environmental conditions on the treatment performance. The design of the reactor, including configuration, dimensions, electrodes, membranes, separators, and target contaminants are discussed. This review aims to provide practical guidance for the future application of MFCs in groundwater remediation.


Asunto(s)
Fuentes de Energía Bioeléctrica , Restauración y Remediación Ambiental , Agua Subterránea , Agua Subterránea/química , Restauración y Remediación Ambiental/métodos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
4.
J Environ Sci (China) ; 144: 113-136, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38802224

RESUMEN

Electrochemical methods are increasingly favored for remediating polluted environments due to their environmental compatibility and reagent-saving features. However, a comprehensive understanding of recent progress, mechanisms, and trends in these methods is currently lacking. Web of Science (WoS) databases were utilized for searching the primary data to understand the knowledge structure and research trends of publications on electrochemical methods and to unveil certain hotspots and future trends of electrochemical methods research. The original data were sampled from 9080 publications in those databases with the search deadline of June 1st, 2022. CiteSpace and VOSviewer software facilitated data visualization and analysis of document quantities, source journals, institutions, authors, and keywords. We discussed principles, influencing factors, and progress related to seven major electrochemical methods. Notably, publications on this subject have experienced significant growth since 2007. The most frequently-investigated areas in electrochemical methods included novel materials development, heavy metal remediation, organic pollutant degradation, and removal mechanism identification. "Advanced oxidation process" and "Nanocomposite" are currently trending topics. The major remediation mechanisms are adsorption, oxidation, and reduction. The efficiency of electrochemical systems is influenced by material properties, system configuration, electron transfer efficiency, and power density. Electro-Fenton exhibits significant advantages in achieving synergistic effects of anodic oxidation and electro-adsorption among the seven techniques. Future research should prioritize the improvement of electron transfer efficiency, the optimization of electrode materials, the exploration of emerging technology coupling, and the reduction in system operation and maintenance costs.


Asunto(s)
Bibliometría , Técnicas Electroquímicas , Restauración y Remediación Ambiental , Restauración y Remediación Ambiental/métodos , Técnicas Electroquímicas/métodos , Contaminantes Ambientales/análisis
5.
J Environ Sci (China) ; 100: 99-109, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33279058

RESUMEN

TiO2/graphene oxide (GO) as photocatalyst in the photo-degradation of multitudinous pollutants has been extensively studied. But its low photocatalytic efficiency is attributed to the high band gap energy which lead to low light utilization. Cu-TiO2/GO was synthesized via the impregnation methods to enhance the catalytic performance. The Cu-TiO2/GO reaction rate constant for photo-degradation of pollutants (tetracycline hydrochloride, TC) was about 1.4 times that of TiO2/GO. In 90 min, the removal ratio of Cu-TiO2/GO for TC was 98%, and the maximum degradation ratio occurred at pH 5. After five cycles, the removal ratio of Cu-TiO2/GO still exceeded 98%. UV-visible adsorption spectra of Cu-TiO2/GO showed that its band gap was narrower than TiO2/GO. Electron paramagnetic resonance (EPR) spectra test illustrated the generation rate of •O2- and •OH was higher in Cu-TiO2/GO system than TiO2/GO and TiO2 system. The contribution sequence of oxidative species was •O2- > holes (h+) > •OH in both TiO2/GO and Cu-TiO2/GO system. Interestingly, the contribution of •OH in Cu-TiO2/GO was less than that in TiO2/GO during the photo-degradation process. This phenomenon was attributed to the better adsorption performance of Cu-TiO2/GO which could reduce the accessibility of TC to •OH in liquid. The enhanced non­hydroxyl radical contribution could be attributed to that the more other active species or sites on (nearby) the surface of Cu-TiO2/GO generated after doping Cu. These results provide a new perspective for the tradition metal-doped conventional catalysts to enhance the removal of organic pollutants in the environment.


Asunto(s)
Cobre , Tetraciclina , Catálisis , Grafito , Luz , Fotólisis , Titanio
6.
Environ Res ; 189: 109869, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32678731

RESUMEN

Mine tailing dumps represent significant threats to ecological environments due to the presence of toxic substances. The present work investigated the relationship among microbial activity, the community, antibiotic resistance genes (ARGs) and trace metals in soil surrounding gold mine tailings. Using microbial metabolic activity and high-throughput sequencing analysis, we found the trace metals Cd and Hg could be main factors influencing the microbial community. According to bacterial co-occurrence pattern analysis, the effects of total cadmium and total mercury on bacterial diversity are potentially mediated by influencing bacteria community in the keystone module II. Additionally, most of metal-resistant bacteria belong to Actinobacteria and Proteobacteria, and the metal tolerance suggested to be linked with various functions including replication, recombination and repair, as well as inorganic ion transport and metabolism based on PICRUSt2 analysis. We also found that metals generated by mining activity may trigger the co-selection of antibiotic resistance in the phyla Actinobacteria and Proteobacteria due to co-resistance or cross resistance. Additionally, PLS-PM analysis revealed that metals could indirectly affect ARGs by influencing bacterial diversity in gold mining areas.


Asunto(s)
Metales Pesados , Microbiota , Contaminantes del Suelo , Antibacterianos/toxicidad , Farmacorresistencia Microbiana , Oro , Metales Pesados/toxicidad , Minería , Microbiología del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
7.
J Environ Sci (China) ; 96: 21-32, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32819696

RESUMEN

The degradation of pharmaceutical micropollutants is an intensifying environmental problem and synthesis of efficient photocatalysts for this purpose is one of the foremost challenges worldwide. Therefore, this study was conducted to develop novel plasmonic Ag/Ag2O/BiVO4 nanocomposite photocatalysts by simple precipitation and thermal decomposition methods, which could exhibit higher photocatalytic activity for mineralized pharmaceutical micropollutants. Among the different treatments, the best performance was observed for the Ag/Ag2O/BiVO4 nanocomposites (5 wt.%; 10 min's visible light irradiation) which exhibited 6.57 times higher photodegradation rate than the pure BiVO4. Further, the effects of different influencing factors on the photodegradation system of tetracycline hydrochloride (TC-HCl) were investigated and the feasibility for its practical application was explored through the specific light sources, water source and cycle experiments. The mechanistic study demonstrated that the photogenerated holes (h+), superoxide radicals (•O2-) and hydroxyl radicals (•OH) participated in TC-HCl removal process, which is different from the pure BiVO4 reaction system. Hence, the present work can provide a new approach for the formation of novel plasmonic photocatalysts with high photoactivity and can act as effective practical application for environmental remediation.


Asunto(s)
Nanopartículas , Preparaciones Farmacéuticas , Bismuto , Catálisis , Luz , Óxidos , Compuestos de Plata , Vanadatos
8.
Ecotoxicol Environ Saf ; 170: 278-285, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30529923

RESUMEN

The emerging organic micro-pollutants, such as bisphenol A (BPA), chloroxylenol (PCMX) and carbamazepine (CBZ), have raised concerns owing to their adverse impact on human health and ecological security. In this study, a novel cyclodextrin polymer (ß-CDP) has been successfully prepared by nucleophilic substitution of ß-cyclodextrin with tetrafluoroterephthalonitrile (TFP). The removal of three emerging organic micro-pollutants (BPA, CBZ and PCMX) by ß-CDP under a single or mixture adsorption system was examined, and the adsorption behavior was investigated by adsorption kinetics and isotherm study. The maximum adsorption capacity of ß-CDP for BPA, PCMX and CBZ according to Langmuir isotherm in single system was 164.4, 144.1 and 136.4 mg/g, respectively. Compared with single system, the competitive adsorption of each pollutant on ß-CDP in mixture system was only slightly inhibited. Changing the pH, raising the presence of fulvic acid (FA) or ionic strength had no significant influence on the adsorption of BPA, PCMX and CBZ onto ß-CDP. The removal of these three organic micro-pollutants was related to the value of logKow of the contaminants. These results demonstrated remarkable advantages of ß-CDP material relevant to organic micro-pollutants removal in wastewater treatment.


Asunto(s)
Compuestos de Bencidrilo/análisis , Carbamazepina/análisis , Celulosa/química , Ciclodextrinas/química , Fenoles/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Xilenos/análisis , Adsorción , Aguas Residuales/química
9.
Sensors (Basel) ; 18(9)2018 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-30231574

RESUMEN

Deep learning techniques have boosted the performance of hyperspectral image (HSI) classification. In particular, convolutional neural networks (CNNs) have shown superior performance to that of the conventional machine learning algorithms. Recently, a novel type of neural networks called capsule networks (CapsNets) was presented to improve the most advanced CNNs. In this paper, we present a modified two-layer CapsNet with limited training samples for HSI classification, which is inspired by the comparability and simplicity of the shallower deep learning models. The presented CapsNet is trained using two real HSI datasets, i.e., the PaviaU (PU) and SalinasA datasets, representing complex and simple datasets, respectively, and which are used to investigate the robustness or representation of every model or classifier. In addition, a comparable paradigm of network architecture design has been proposed for the comparison of CNN and CapsNet. Experiments demonstrate that CapsNet shows better accuracy and convergence behavior for the complex data than the state-of-the-art CNN. For CapsNet using the PU dataset, the Kappa coefficient, overall accuracy, and average accuracy are 0.9456, 95.90%, and 96.27%, respectively, compared to the corresponding values yielded by CNN of 0.9345, 95.11%, and 95.63%. Moreover, we observed that CapsNet has much higher confidence for the predicted probabilities. Subsequently, this finding was analyzed and discussed with probability maps and uncertainty analysis. In terms of the existing literature, CapsNet provides promising results and explicit merits in comparison with CNN and two baseline classifiers, i.e., random forests (RFs) and support vector machines (SVMs).

10.
Water Sci Technol ; 78(12): 2553-2563, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30767920

RESUMEN

A filter paper was functionalized with ß-cyclodextrin and citric acid via esterification reaction for the removal of dyes and Cu ions from aqueous solutions. The adsorption capacity and removal performance of the modified filter paper (MFP) was investigated using static and dynamic adsorption experiments. The static adsorption data fit well the Langmuir and pseudo-second-order models, and the adsorption capacity of Methylene Blue (MB), Brilliant Green (BG), Rhodamine-B (RB) and Cu(II) over the MFP were 124.6 mg/g, 130.4 mg/g, 99.7 mg/g and 39.1 mg/g, respectively, which are much higher than the unmodified filter paper (below 2 mg/g). Even better, the decolorization performance and Cu(II) removal of MFP are remarkable in dynamic adsorption. The effluent can reach the National Standard for dyeing and finishing of textile industry of China after three cycles in a continuous filtration-adsorption system. This method provides a new pathway to achieve high efficiency removal of dyes and metal ions from wastewater.


Asunto(s)
Colorantes/análisis , Ciclodextrinas/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Adsorción , China , Colorantes/química , Cinética , Soluciones , Aguas Residuales/química , Contaminantes Químicos del Agua/química
11.
Sci Total Environ ; 946: 174371, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945232

RESUMEN

Groundwater in karst regions is of immense value due to its vital support for regional ecosystems and residents' livelihoods. However, it is simultaneously threatened by multi-source pollution from agricultural non-point sources, industrial and domestic point sources, and mining activities. This study focuses on the Guangxi of China, which features typical karst topography, aiming to thoroughly assess the groundwater quality and related health risks in Guangxi, especially identifying the impacts of various key pollution sources on the groundwater environment. A total of 1912 groundwater samples were collected, covering an area of approximately 237,600 km2. The spatial distribution of pollutants was analysed using the Nemeroww index method and Kriging interpolation, while multivariate statistical and cluster analysis methods were employed to identify the main types of pollution sources. Furthermore, based on the human health risk assessment model of the U.S. Environmental Protection Agency (US EPA), a risk assessment was conducted for key pollutants. The results revealed widespread heavy metal contamination in Guangxi's groundwater, particularly with concentrations of Mn, As, Al, Pb reaching up to 9.4 mg/L, 2.483 mg/L, 37.95 mg/L, 4.761 mg/L, respectively, significantly exceeding China's national Class III groundwater quality standards. Cluster analysis indicated that mining and industrial activities are the primary sources of pollution. The health risk assessment demonstrated that these activities pose a significant risk to public health. The aim of this study is to provide a scientific basis for the protection of the groundwater environment in Guangxi and other karst areas, the formulation of pollution prevention and control strategies, and the optimization of urban and industrial land use layouts. Future research should focus on advanced isotopic and molecular biological techniques to trace pollution sources more precisely and evaluate the effectiveness of pollution control measures.

12.
Chemosphere ; 349: 141001, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128740

RESUMEN

The widespread use of polyethylene (PE) agricultural films has led to a large accumulation of microplastics in soil, and the environmental effects of microplastics on soil-plants have received increasing attention. In the actual soil environment, microplastics undergo significant changes in their physicochemical properties due to aging, accompanied by complex ecological and environmental effects. However, the quantitative understanding of the environmental effects of microplastic aging in soil-plant systems is still unclear. Therefore, this study investigated the effects of aged and unaged PE microplastics on ecological functions and microplastic transfer mechanisms in soil-plant system, and confirmed the transport behavior of micrometer-sized microplastics (26 µm) within maize plants, expanding the upper size limit of existing studies on microplastic transport within plants. The accumulation of microplastics in maize was also quantitatively assessed in combination with the self-established method of Eu marked PE. The mobility ratio of microplastics from soil to roots, roots to stems, and stems to leaves was 1.07%, 0.76%, and 103.28%, respectively. This study provides a scientific understanding for the environmental effects of microplastics in soil-plants systems quantitatively.


Asunto(s)
Microplásticos , Contaminantes del Suelo , Suelo/química , Plásticos , Polietileno , Contaminantes del Suelo/análisis
13.
Environ Sci Technol ; 47(9): 4489-96, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23484822

RESUMEN

We report a protocol for entrapping of various water-dispersed nanomaterials: fullerenes, multiwall carbon nanotubes, quantum dots (semiconductor nanoparticles), and gold nanorods, into a DNA-chitosan complex. In contrast to small-size nanomaterial particles, the bulky DNA-chitosan interpolyelectrolyte complex incorporating the dispersed nanomaterials can be easily separated from aqueous media by centrifugation, filtration, or decantation. While the removal of nanoparticles by centrifugation is equally efficient for every type of nanoparticles and reaches 100%, the higher efficiency of the nanomaterials removal by other two methods is favored by larger size of nanoparticles. The application of this entrapping protocol for removal of nanomaterials from water is discussed.


Asunto(s)
Quitosano/química , ADN/química , Fulerenos/química , Nanopartículas/química , Nanotubos/química , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Transmisión
14.
Environ Sci Pollut Res Int ; 30(21): 60538-60551, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37036646

RESUMEN

Waste slag has low nutrient content, so it has insufficient nutrient cycling and transformation in the soil ecosystem. There are few studies on the application of oligotrophic phosphate-solubilizing bacteria and phosphate (P) fertilizer to improve the properties of waste slags. In this study, three oligotrophic bacterial strains with P solubilizing activity, namely, Bacillus subtilis 2C (7.23 µg/mL), Bacillus subtilis 6C (4.07 µg/mL), and Bacillus safensis 2N (5.05 µg/mL), were isolated from waste slags. In the pot experiment, compared with no application of P fertilizer, inoculation of Bacillus subtilis 2C with a 50% recommended dose of P fertilizer significantly increased the available phosphorus (AP), total phosphorus (TP), and total nitrogen (TN) in slag by 33.16%, 76.70%, and 233.33%, respectively. The N, P uptake and fresh weight of Lolium multiflorum Lam. were significantly improved by 114.15%, 139.02%, and 100%, respectively. The analysis of the bacterial community showed that the application of P fertilizer decreased the diversity and richness of the bacterial community, and with the addition of phosphorus fertilizer and Bacillus subtilis 2C, the bacterial community in the slag developed towards eutrophication. Redundancy analysis (RDA) showed that the TP content in the slag was significantly correlated with the bacterial community (P = 0.001, < 0.01), followed by the TN content. This study on different P fertilizer application methods can provide some basic ideas for improving the performance of waste slag.


Asunto(s)
Ecosistema , Lolium , Fertilizantes/análisis , Bacterias , Fósforo/farmacología , Fosfatos/farmacología , Suelo , Fertilización , Microbiología del Suelo , Nitrógeno/análisis
15.
J Hazard Mater ; 452: 131240, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37030220

RESUMEN

Iron-based catalysts have attracted increasing attention in heterogeneous activation of peroxymonosulfate (PMS). However, the activity of most iron-based heterogenous catalysts is not satisfactory for practical application and the proposed activation mechanisms of PMS by iron-based heterogenous catalyst vary case by case. This study prepared Bi2Fe4O9 (BFO) nanosheet with super high activity toward PMS, which was comparable to its homogeneous counterpart at pH 3.0 and superior to its homogeneous counterpart at pH 7.0. Fe sites, lattice oxygen and oxygen vacancies on BFO surface were believed to be involved in the activation of PMS. By using electron paramagnetic resonance (EPR), radical scavenging tests, 57Fe Mössbauer and 18O isotope-labeling technique, the generation of reactive species including sulfate radicals, hydroxyl radicals, superoxide and Fe (IV) were confirmed in BFO/PMS system. However, the contribution of reactive species to the elimination of organic pollutants very much depends on their molecular structure. The effect of water matrices on the elimination of organic pollutants also hinges on their molecular structure. This study implies that the molecular structure of organic pollutants governs their oxidation mechanism and their fate in iron-based heterogeneous Fenton-like system and further broadens our knowledge on the activation mechanism of PMS by iron-based heterogeneous catalyst.

16.
J Environ Health Sci Eng ; 21(1): 47-61, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37159733

RESUMEN

In the present study, a magnetic flower-like Fe3O4@C-dot@MnO2 nanocomposite was synthesized by hydrothermal method and applied for As(III) removal by oxidation and adsorption process. Individual property of the entire material (i.e. magnetic property of Fe3O4, mesoporous surface property of C-dot and oxidation property of MnO2) make the composite efficient with good adsorption capacity for As(III) adsorption. The Fe3O4@C-dot@MnO2 nanocomposite had a saturation magnetization of 26.37 emu/g and it magnetically separated within 40 s. The Fe3O4@C-dot@MnO2 nanocomposite was able to reduce the 0.5 mg/L concentration of As(III) to 0.001 mg/L in just 150 min at pH 3. Pseudo-second-order kinetic and Langmuir isotherm model agreed with experimental data. The uptake capacity of Fe3O4@C-dot@MnO2 nanocomposite was 42.68 mg/g. The anions like chloride, sulphate and nitrate did not show any effect on removal but carbonate and phosphate influenced the As(III) removal rate. Regeneration was studied with NaOH and NaClO solution and the adsorbent was used for repeated five cycles above 80% removal capacity. The XPS studies proposed that As(III) first oxidized to As(V) then adsorb on the composite surface. This study shows the potential applicability of Fe3O4@C-dot@MnO2 nanocomposite to high extent and gives a suitable path for the proficient removal of As(III) from wastewater.

17.
J Hazard Mater ; 460: 132302, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37647663

RESUMEN

In this study, the interaction between primary/secondary PE MPs and soil - microbiome - crop complex system and PE MPs enrichment behavior in crops were studied by using the self-developed quantitative characterization method of Eu-MPs and in situ zymography. The results demonstrated for the first time the enrichment effect of micron-sized PE (> 10 µm) in crops, manifested as roots>leaves>stems. Primary PE MPs significantly increased soil TN, TC, SOM and ß-glu activity and inhibited Phos activity. Age-PE MPs significantly reduced soil TN, TP, ß-glu and Phos activities and also have significant inhibitory effects on plant height, stem diameter, and leaf dry weight of maize. Age-PE MPs significantly affected soil microbial diversity, mainly caused by bacterial genera such as UTCFX1, Sphingomonas, Subgroup-6 and Gemmatimonas. Age-PE MPs also affected some metabolism related to microbial community composition and maize growth, including Glycerolipid, Citrate cycle (TCA cycle), C5-Branched dibasic acid, Arginine and proline, Tyrosine metabolism, pentose phosphate pathway, Valine, leucine and isoleucine biosynthesis. These research results indicated that the PE MPs, which are widely present in farmland soils, can affect crop growth, soil microbial community and metabolic function after aging, thus affecting agroecosystems and terrestrial biodiversity.


Asunto(s)
Gastrópodos , Microbiota , Animales , Polietileno , Microplásticos , Plásticos , Envejecimiento , Productos Agrícolas
18.
Environ Pollut ; 338: 122689, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37804901

RESUMEN

Abiogenic silicon (Si), though deemed a quasi-nutrient, remains largely inaccessible to plants due to its prevalence within mineral ores. Nevertheless, the influence of Si extends across a spectrum of pivotal plant processes. Si emerges as a versatile boon for plants, conferring a plethora of advantages. Notably, it engenders substantial enhancements in biomass, yield, and overall plant developmental attributes. Beyond these effects, Si augments the activities of vital antioxidant enzymes, encompassing glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), among others. It achieves through the augmentation of reactive oxygen species (ROS) scavenging gene expression, thus curbing the injurious impact of free radicals. In addition to its effects on plants, Si profoundly ameliorates soil health indicators. Si tangibly enhances soil vitality by elevating soil pH and fostering microbial community proliferation. Furthermore, it exerts inhibitory control over ions that could inflict harm upon delicate plant cells. During interactions within the soil matrix, Si readily forms complexes with potentially toxic metals (PTEs), encapsulating them through Si-PTEs interactions, precipitative mechanisms, and integration within colloidal Si and mineral strata. The amalgamation of Si with other soil amendments, such as biochar, nanoparticles, zeolites, and composts, extends its capacity to thwart PTEs. This synergistic approach enhances soil organic matter content and bolsters overall soil quality parameters. The utilization of Si-based fertilizers and nanomaterials holds promise for further increasing food production and fortifying global food security. Besides, gaps in our scientific discourse persist concerning Si speciation and fractionation within soils, as well as its intricate interplay with PTEs. Nonetheless, future investigations must delve into the precise functions of abiogenic Si within the physiological and biochemical realms of both soil and plants, especially at the critical juncture of the soil-plant interface. This review seeks to comprehensively address the multifaceted roles of Si in plant and soil systems during interactions with PTEs.


Asunto(s)
Silicio , Contaminantes del Suelo , Silicio/metabolismo , Suelo/química , Antioxidantes/metabolismo , Plantas/metabolismo , Glutatión/metabolismo , Minerales/metabolismo , Contaminantes del Suelo/análisis
19.
Int J Nanomedicine ; 18: 743-763, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36820060

RESUMEN

Purpose: Realgar, as a kind of traditional mineral Chinese medicine, can inhibit multiple solid tumor growth and serve as an adjuvant drug in cancer therapy. However, the extremely low solubility and poor body absorptive capacity limit its application in clinical medicine. To overcome this therapeutic hurdle, realgar can here be fabricated into a nano-realgar hydrogel with enhanced chemotherapy and radiotherapy (RT) ability. Our objective is to evaluate the superior biocompatibility and anti-tumor activity of nano-realgar hydrogel. Methods: We have successfully synthesized nano-realgar quantum dots (QDs) coupling with 6-AN molecules (NRA QDs) and further encapsulated with a pH-sensitive dextran hydrogel carrier with hyaluronic acid coating (DEX-HA gel) to promote bioavailability, eventually forming a multifunctional nano-realgar hydrogel (NRA@DH Gel). To better investigate the tumor therapy efficiency of the NRA@DH Gel, we have established the mice in situ bearing GL261 brain glioblastoma as animal models assigned to receive intratumor injection of NRA@DH Gel. Results: The designed NRA@DH Gel as an antitumor drug can not only exert the prominent chemotherapy effect but also as a "sustainable reactive oxygen species (ROS) generator" can inhibit in the pentose phosphate pathway (PPP) metabolism and reduce the production of nicotinamide adenine dinucleotide phosphate (NADPH), thereby inhibiting the conversion of glutathione disulfide (GSSG) to glutathione (GSH), reducing GSH concentrations in tumor cells, triggering the accumulation of ROS, and finally enhancing the effectiveness of RT. Conclusion: Through the synergistic effect of chemotherapy and RT, NRA@DH Gel effectively inhibited the proliferation and migration of tumor cells, suppressed tumor growth, improved motor coordination, and prolonged survival in tumor-bearing mice. Our work aims to improve the NRA@DH Gel-mediated synergistic chemotherapy and RT will endow a "promising future" for the old drug in clinically comprehensive applications.


Asunto(s)
Antineoplásicos , Glioblastoma , Ratones , Animales , Hidrogeles , Especies Reactivas de Oxígeno , Antineoplásicos/farmacología , Medicina Tradicional China , Línea Celular Tumoral
20.
J Nanosci Nanotechnol ; 12(1): 635-41, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22524032

RESUMEN

We elaborated a facile method to control the size of CdS nanoshells obtained by DNA assisted "double templating" approach. By changing the concentration of NaCl in solution to vary the extent of DNA electrostatic deposition on cationic silica beads, we succeeded to control the density of DNA adsorbed on the beads, and further the density of CdS material grown on DNA. Further dissolution of the silica core triggers shrinking of CdS shell to a different extent depending on the CdS shell density and results in formation of CdS nanoshells of different sizes from ca. 100 nm to ca. 400 nm. Therefore, the main advantage of the proposed method is that it can be used to synthesize hollow nanoshells of various sizes, from ca. 25% to ca. 75% size of the primary template (silica bead), by using only one single primary template.


Asunto(s)
Compuestos de Cadmio/química , Cristalización/métodos , ADN/química , ADN/ultraestructura , Impresión Molecular/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Compuestos de Selenio/química , Ensayo de Materiales , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA