Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 2(11): 1308-13, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17192978

RESUMEN

The tuning of CdSe quantum dot (QDs) sizes, and consequently their corresponding two-photon absorption (TPA) cross section, has been systematically investigated. As the size (diameter) of the quantum dots increases, the TPA cross section is found to be empirically related via a power-law proportionality of 3.5+/-0.5 and 5.6+/-0.7 to the diameters of CdSe and CdTe QDs, respectively. The results are tentatively rationalized via a theoretical model of two-photon excitation properties in a system incorporating excitons and defects.


Asunto(s)
Compuestos de Cadmio/química , Nanotecnología/métodos , Compuestos de Selenio/química , Telurio/química , Absorción , Luz , Nanopartículas del Metal/química , Microscopía Fluorescente , Modelos Estadísticos , Fotoquímica , Fotones , Puntos Cuánticos
2.
Chemphyschem ; 7(6): 1372-81, 2006 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-16637089

RESUMEN

Detailed insights into the excited-state enol(N*)-keto(T*) intramolecular proton transfer (ESIPT) reaction in 2-(2'-hydroxy-4'-diethylaminophenyl)benzothiazole (HABT) have been investigated via steady-state and femtosecond fluorescence upconversion approaches. In cyclohexane, in contrast to the ultrafast rate of ESIPT for the parent 2-(2'-hydroxyphenyl)benzothiazole (>2.9+/-0.3 x 10(13) s(-1)), HABT undergoes a relatively slow rate (approximately 5.4+/-0.5 x 10(11) s(-1)) of ESIPT. In polar aprotic solvents competitive rate of proton transfer and rate of solvent relaxation were resolved in the early dynamics. After reaching the solvation equilibrium in the normal excited state (N(eq)*), ESIPT takes place with an appreciable barrier. The results also show N(eq)*(enol)<-->T(eq)*(keto) equilibrium, which shifts toward N(eq)* as the solvent polarity increases. Temperature-dependent relaxation dynamics further resolved a solvent-induced barrier of 2.12 kcal mol(-1) for the forward reaction in CH(2)Cl(2). The observed spectroscopy and dynamics are rationalized by a significant difference in dipole moment between N(eq)* and T(eq)*, while the dipolar vector for the enol form in the ground state (N) is in between that of N(eq)* and T(eq)*. Upon N-->N* Franck-Condon excitation, ESIPT is energetically favorable, and its rate is competitive with the solvation relaxation process. Upon reaching equilibrium configurations N(eq)* and T(eq)*, forward and/or backward ESIPT takes place with an appreciable solvent polarity induced barrier due to differences in polarization equilibrium between N(eq)* and T(eq)*.

3.
J Org Chem ; 71(2): 456-65, 2006 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-16408952

RESUMEN

[reaction: see text] A series of 9,9'-spirobifluorene-bridged bipolar compounds DnAm bearing various n:m ratios for triarylamine (D) versus 1,3,4-oxadiazole-conjugated oligoaryl moiety (A) have been synthesized to investigate the corresponding photoinduced electron transfer (PET) property. The excitation behaviors were probed by steady-state absorption, emission, fluorescence solvatochromism, and femtosecond fluorescence up-conversion spectroscopy. The overall reaction dynamics can be rationalized by the rate of PET, in combination with solvent relaxation dynamics. It was found that the rate of PET is dependent on the anchored D/A ratio. The rate of D1A1 and D2A1 was resolved to be approximately 2.44 x 10(12) and 2.32 x 10(12) s(-)(1), respectively, while it is irresolvable in D1A2 and D2A2 (>6.6 x 10(12) s(-)(1)). In another approach, based on the comprehensive X-ray data, cyclic voltammetry, and absorption/emission spectra, the rate of photoinduced electron transfer was also qualitatively estimated. Fair comparisons were made between experimental and theoretical approaches to gain detailed insight into the PET for the titled systems.

4.
Chemphyschem ; 7(1): 222-8, 2006 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-16404768

RESUMEN

Syntheses of CdTe/CdSe type-II quantum dots (QDs) using CdO and CdCl2 as precursors for core and shell, respectively, are reported. Characterization was made via near-IR interband emission, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDX), and X-ray diffraction (XRD). Femtosecond fluorescence upconversion measurements on the relaxation dynamics of the CdTe core (in CdTe/CdSe) emission and CdTe/CdSe interband emission reveal that as the size of the core increases from 5.3, 6.1 to 6.9 nm, the rate of photoinduced electron separation decreases from 1.96, 1.44 to 1.07 x10(12) s(-1). The finite rates of the initial charge separation are tentatively rationalized by the small electron-phonon coupling, causing weak coupling between the initial and charge-separated states.

5.
J Org Chem ; 70(9): 3560-8, 2005 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-15844991

RESUMEN

[structure: see text] Anti-[2.2](1,4)biphenylenophane (4) was synthesized from de Meijere's tetrabromo[2.2]paracyclophane (5) through a four-step reaction sequence. Although an average separation of 3.09 A between the inner ring of the biphenylene units is normal for [2.2]paracyclophanes, a bond distance of 1.54 Afor the ethano C-C bridge at room temperature is shorter than usual. In addition, trimethylsilyl-substituted anti-[2.2](1,4)biphenylenophane 8 sublimes at 220 degrees C under a pressure lower than 1 x10(-5) Torr without decomposition or thermal isomerization. The high thermal stability of 8 suggested that the ethano bridges of the biphenylenophanes are less strained than those of [2.2]paracyclophane. Bathochromic shifts are observed in their UV-vis absorption spectra. The phane state interactions of 4 and 8 were evidenced by the weak structureless fluorescent emission maximized at 537 and 550 nm in CH(2)Cl(2) along with longer relaxation lifetimes of 229 and 292 ps, respectively.

6.
J Phys Chem A ; 109(17): 3777-87, 2005 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-16833693

RESUMEN

The excitation behaviors for 4'-N,N-diethylamino-3-hydroxyflavone (Ia) have been investigated via femtosecond fluorescence upconversion approaches to gain detailed insights into the mechanism of the proton/charge-transfer coupling reaction. In polar solvents such as CH2Cl2 and CH3CN, in addition to a slow, solvent-polarity-dependent rate (a few tens of picoseconds(-1)) of excited-state intramolecular proton transfer (ESIPT) reported previously, early femtosecond relaxation dynamics clearly reveal that the proton-transfer tautomer emission consists of a rise component of a few hundred femtoseconds. The temporal spectral evolution at the time domain of zero to a few hundred femtoseconds further resolves two distinct emission bands consisting of a proton-transfer tautomer emission and a time-dependent Stokes shifted emission. The results, in combination with ab initio calculations on the dipolar vectors for normal and tautomer species, lead us to unveil the importance of the relationship of the dipolar vectors among various states, and hence the corresponding solvation energetics in the overall ESIPT reaction. We conclude a similar dipolar character between ground-state normal (N) and excited proton-transfer tautomer (T*) species, whereas due to the excited-state intramolecular charge transfer (ESICT), the normal excited state (N*) possesses a large dipolar change with respect to N and T*. ESIPT is thus energetically favorable at the Franck-Condon excited N*, and its rate is competitive with respect to the solvation relaxation process. After reaching the solvent equilibration, there exists an equilibrium between N* and T* states in, for example, CH3CN. Due to the greatly different equilibrium polarization between N* and T*, both forward and reversed ESIPT dynamics are associated with a solvent-induced barrier. The latter viewpoint of the equilibrium type of ESIPT in Ia is in agreement with the previous reports based on steady-state, picosecond, and femtosecond dynamic approaches.


Asunto(s)
Química Física/métodos , Flavonoides/química , Transferencia de Energía , Modelos Químicos , Modelos Moleculares , Oscilometría , Protones , Programas Informáticos , Solventes/química , Espectrofotometría , Factores de Tiempo
7.
J Phys Chem A ; 109(51): 11696-706, 2005 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-16366619

RESUMEN

Comprehensive excitation behaviors of 7-N,N-diethylamino-3-hydroxyflavone (I) have been investigated via steady state, temperature-dependent emission, and fluorescence upconversion to probe the excited-state intramolecular proton transfer (PT) reaction. Upon excitation, I undergoes ultrafast (<<120 fs), adiabatic type of charge transfer (CT), so that the dipolar vector in the Franck-Condon excited state is much different from that in the ground state. In polar solvents such as CH2Cl2 and CH3CN, early relaxation dynamics clearly reveals the competitive rates between solvent relaxation and PT dynamics. After reaching thermal equilibrium, a relatively slow, solvent-polarity-dependent rate (a few tens of picoseconds(-1)) of PT takes places. Firm support of the early relaxation dynamics is rendered by the spectral temporal evolution, which resolves two distinct bands ascribed to CT and PT emission. The results, in combination with ab initio calculations on the dipolar vectors for various corresponding states, led us to conclude that excited-state normal (N*) and excited proton-transfer tautomer (T*) possesses very different dipole orientation, whereas the dipole orientation of the normal ground state (N) is between that of N* and T*. PT is thus energetically favorable at the Franck-Condon excited N*, and its rate is competitive with respect to the solvent relaxation dynamics induced by CT. Unlike the well-known PT system, 4'-N,N-diethylamino-3-hydroxyflavone, in which equilibrium exists between solvent-equilibrated N(eq)* and T(eq)*, N(eq)* --> T(eq)* PT for I is a highly exergonic, irreversible process in all solvents studied. Further temperature-dependent studies deduce a solvent-polarity-perturbed energy barrier of 3.6 kcal/mol for the N(eq)* --> T(eq)* PT in CH3CN. The proposed dipole-moment-tuning PT mechanism with the associated relaxation dynamics is believed to apply to many PT molecules in polar, aprotic solvents.

8.
J Org Chem ; 69(20): 6674-8, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15387589

RESUMEN

A series of pyrrole analogues of benzo[a]pyrene have been synthesized in which pyreno[2,1-b]pyrrole exhibits highly fluorescent properties in solution as well as in crystalline form even possessing strong pi-pi stacking. The pi-stacking-induced fluorescence spectral changes lead to future applications such as molecular recognition feasible upon chemical modification.

9.
J Am Chem Soc ; 126(6): 1650-1, 2004 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-14871093

RESUMEN

A molecular recognition concept exploiting multiple-hydrogen-bond fine-tuned excited-state proton-transfer (ESPT) was conveyed using 3,4,5,6-tetrahydrobis(pyrido[3,2-g]indolo)[2,3-a:3',2'-j]acridine (1a). The catalytic type 1a/carboxylic acids hydrogen-bonding (HB) complexes undergo ultrafast ESPT, resulting in an anomalously large Stokes shifted tautomer emission (lambdamax approximately 600 nm). Albeit forming a quadruple HB complex, ESPT is prohibited in the noncatalytic-type 1a/urea complexes (lambdamax approximately 430 nm). The HB configuration tuning ESPT properties lead to a feasible design for sensing multiple-HB-site analytes of biological interest.


Asunto(s)
Acridinas/química , Ácidos Carboxílicos/química , Enlace de Hidrógeno , Catálisis , Imidazoles/química , Cinética , Malonatos/química , Fotoquímica , Protones , Piridinas/química , Pirroles/química , Ácido Salicílico/química , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA