Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 125(19): 192501, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33216605

RESUMEN

The ß decay of ^{208}Hg into the one-proton hole, one neutron-particle _{81}^{208}Tl_{127} nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N>126, Z<82 quadrant of neutron-rich nuclei. While both negative and positive parity states with spin 0 and 1 are expected within the Q_{ß} window, only three negative parity states are populated directly in the ß decay. The data provide a unique test of the competition between allowed Gamow-Teller and Fermi, and first-forbidden ß decays, essential for the understanding of the nucleosynthesis of heavy nuclei in the rapid neutron capture process. Furthermore, the observation of the parity changing 0^{+}→0^{-}ß decay where the daughter state is core excited is unique, and can provide information on mesonic corrections of effective operators.

2.
Phys Rev Lett ; 121(14): 142701, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30339438

RESUMEN

The ^{12}C(α,γ)^{16}O reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced α width, γ_{11}, of the bound 1^{-} level in ^{16}O is particularly important to determine the cross section. The magnitude of γ_{11} is determined via sub-Coulomb α-transfer reactions or the ß-delayed α decay of ^{16}N, but the latter approach is presently hampered by the lack of sufficiently precise data on the ß-decay branching ratios. Here we report improved branching ratios for the bound 1^{-} level [b_{ß,11}=(5.02±0.10)×10^{-2}] and for ß-delayed α emission [b_{ßα}=(1.59±0.06)×10^{-5}]. Our value for b_{ßα} is 33% larger than previously held, leading to a substantial increase in γ_{11}. Our revised value for γ_{11} is in good agreement with the value obtained in α-transfer studies and the weighted average of the two gives a robust and precise determination of γ_{11}, which provides significantly improved constraints on the ^{12}C(α,γ) cross section in the energy range relevant to hydrostatic He burning.

3.
Phys Rev Lett ; 104(19): 192501, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20866960

RESUMEN

The transfer of neutrons onto 24Ne has been measured using a reaccelerated radioactive beam of 24Ne to study the (d,p) reaction in inverse kinematics. The unusual raising of the first 3/2+ level in 25Ne and its significance in terms of the migration of the neutron magic number from N=20 to N=16 is put on a firm footing by confirmation of this state's identity. The raised 3/2+ level is observed simultaneously with the intruder negative parity 7/2- and 3/2- levels, providing evidence for the reduction in the N=20 gap. The coincident gamma-ray decays allowed the assignment of spins as well as the transferred orbital angular momentum. The excitation energy of the 3/2+ state shows that the established USD shell model breaks down well within the sd model space and requires a revised treatment of the proton-neutron monopole interaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA