Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Cell ; 72(4): 625-635.e4, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30454561

RESUMEN

In response to genotoxic stress, cells activate a signaling cascade known as the DNA damage checkpoint (DDC) that leads to a temporary cell cycle arrest and activation of DNA repair mechanisms. Because persistent DDC activation compromises cell viability, this process must be tightly regulated. However, despite its importance, the mechanisms regulating DDC recovery are not completely understood. Here, we identify a DNA-damage-regulated histone modification in Saccharomyces cerevisiae, phosphorylation of H4 threonine 80 (H4T80ph), and show that it triggers checkpoint inactivation. H4T80ph is critical for cell survival to DNA damage, and its absence causes impaired DDC recovery and persistent cell cycle arrest. We show that, in response to genotoxic stress, p21-activated kinase Cla4 phosphorylates H4T80 to recruit Rtt107 to sites of DNA damage. Rtt107 displaces the checkpoint adaptor Rad9, thereby interrupting the checkpoint-signaling cascade. Collectively, our results indicate that H4T80ph regulates DDC recovery.


Asunto(s)
Daño del ADN , Reparación del ADN , Histonas/genética , Histonas/metabolismo , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
2.
Nature ; 573(7774): 416-420, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31511699

RESUMEN

Despite major progress in defining the functional roles of genes, a complete understanding of their influences is far from being realized, even in relatively simple organisms. A major milestone in this direction arose via the completion of the yeast Saccharomyces cerevisiae gene-knockout collection (YKOC), which has enabled high-throughput reverse genetics, phenotypic screenings and analyses of synthetic-genetic interactions1-3. Ensuing experimental work has also highlighted some inconsistencies and mistakes in the YKOC, or genome instability events that rebalance the effects of specific knockouts4-6, but a complete overview of these is lacking. The identification and analysis of genes that are required for maintaining genomic stability have traditionally relied on reporter assays and on the study of deletions of individual genes, but whole-genome-sequencing technologies now enable-in principle-the direct observation of genome instability globally and at scale. To exploit this opportunity, we sequenced the whole genomes of nearly all of the 4,732 strains comprising the homozygous diploid YKOC. Here, by extracting information on copy-number variation of tandem and interspersed repetitive DNA elements, we describe-for almost every single non-essential gene-the genomic alterations that are induced by its loss. Analysis of this dataset reveals genes that affect the maintenance of various genomic elements, highlights cross-talks between nuclear and mitochondrial genome stability, and shows how strains have genetically adapted to life in the absence of individual non-essential genes.


Asunto(s)
Genoma Fúngico/genética , Inestabilidad Genómica , Saccharomyces cerevisiae/genética , Adaptación Biológica/genética , Técnicas de Inactivación de Genes , Genoma Mitocondrial/genética , Secuenciación Completa del Genoma
3.
Nucleic Acids Res ; 49(7): 3919-3931, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33764464

RESUMEN

A single amino acid residue change in the exonuclease domain of human DNA polymerase ϵ, P286R, is associated with the development of colorectal cancers, and has been shown to impart a mutator phenotype. The corresponding Pol ϵ allele in the yeast Saccharomyces cerevisiae (pol2-P301R), was found to drive greater mutagenesis than an entirely exonuclease-deficient Pol ϵ (pol2-4), an unexpected phenotype of ultra-mutagenesis. By studying the impact on mutation frequency, type, replication-strand bias, and sequence context, we show that ultra-mutagenesis is commonly observed in yeast cells carrying a range of cancer-associated Pol ϵ exonuclease domain alleles. Similarities between mutations generated by these alleles and those generated in pol2-4 cells indicate a shared mechanism of mutagenesis that yields a mutation pattern similar to cancer Signature 14. Comparison of POL2 ultra-mutator with pol2-M644G, a mutant in the polymerase domain decreasing Pol ϵ fidelity, revealed unexpected analogies in the sequence context and strand bias of mutations. Analysis of mutational patterns unique to exonuclease domain mutant cells suggests that backtracking of the polymerase, when the mismatched primer end cannot be accommodated in the proofreading domain, results in the observed insertions and T>A mutations in specific sequence contexts.


Asunto(s)
Neoplasias Colorrectales , ADN Polimerasa II , Tasa de Mutación , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas de Saccharomyces cerevisiae , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/genética , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Replicación del ADN , Humanos , Mutagénesis , Mutación , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(40): 24947-24956, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32968016

RESUMEN

The acquisition of mutations plays critical roles in adaptation, evolution, senescence, and tumorigenesis. Massive genome sequencing has allowed extraction of specific features of many mutational landscapes but it remains difficult to retrospectively determine the mechanistic origin(s), selective forces, and trajectories of transient or persistent mutations and genome rearrangements. Here, we conducted a prospective reciprocal approach to inactivate 13 single or multiple evolutionary conserved genes involved in distinct genome maintenance processes and characterize de novo mutations in 274 diploid Saccharomyces cerevisiae mutation accumulation lines. This approach revealed the diversity, complexity, and ultimate uniqueness of mutational landscapes, differently composed of base substitutions, small insertions/deletions (InDels), structural variants, and/or ploidy variations. Several landscapes parallel the repertoire of mutational signatures in human cancers while others are either novel or composites of subsignatures resulting from distinct DNA damage lesions. Notably, the increase of base substitutions in the homologous recombination-deficient Rad51 mutant, specifically dependent on the Polζ translesion polymerase, yields COSMIC signature 3 observed in BRCA1/BRCA2-mutant breast cancer tumors. Furthermore, "mutome" analyses in highly polymorphic diploids and single-cell bottleneck lineages revealed a diverse spectrum of loss-of-heterozygosity (LOH) signatures characterized by interstitial and terminal chromosomal events resulting from interhomolog mitotic cross-overs. Following the appearance of heterozygous mutations, the strong stimulation of LOHs in the rad27/FEN1 and tsa1/PRDX1 backgrounds leads to fixation of homozygous mutations or their loss along the lineage. Overall, these mutomes and their trajectories provide a mechanistic framework to understand the origin and dynamics of genome variations that accumulate during clonal evolution.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Mutación/genética , Saccharomyces cerevisiae/genética , Acetiltransferasas/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/patología , Daño del ADN/genética , ADN Polimerasa Dirigida por ADN , Diploidia , Femenino , Endonucleasas de ADN Solapado/genética , Genoma Fúngico/genética , Humanos , Pérdida de Heterocigocidad/genética , Proteínas de la Membrana/genética , Peroxirredoxinas/genética , Recombinasa Rad51/genética , Proteínas de Saccharomyces cerevisiae/genética , Secuenciación Completa del Genoma
5.
EMBO J ; 34(11): 1509-22, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25899817

RESUMEN

DNA double-strand break (DSB) repair by homologous recombination (HR) requires 3' single-stranded DNA (ssDNA) generation by 5' DNA-end resection. During meiosis, yeast Sae2 cooperates with the nuclease Mre11 to remove covalently bound Spo11 from DSB termini, allowing resection and HR to ensue. Mitotic roles of Sae2 and Mre11 nuclease have remained enigmatic, however, since cells lacking these display modest resection defects but marked DNA damage hypersensitivities. By combining classic genetic suppressor screening with high-throughput DNA sequencing, we identify Mre11 mutations that strongly suppress DNA damage sensitivities of sae2∆ cells. By assessing the impacts of these mutations at the cellular, biochemical and structural levels, we propose that, in addition to promoting resection, a crucial role for Sae2 and Mre11 nuclease activity in mitotic DSB repair is to facilitate the removal of Mre11 from ssDNA associated with DSB ends. Thus, without Sae2 or Mre11 nuclease activity, Mre11 bound to partly processed DSBs impairs strand invasion and HR.


Asunto(s)
Reparación del ADN/fisiología , ADN de Hongos/metabolismo , ADN de Cadena Simple/metabolismo , Endonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ADN de Hongos/genética , ADN de Cadena Simple/genética , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
EMBO Rep ; 18(6): 1000-1012, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28389464

RESUMEN

Camptothecin-induced locking of topoisomerase 1 on DNA generates a physical barrier to replication fork progression and creates topological stress. By allowing replisome rotation, absence of the Tof1/Csm3 complex promotes the conversion of impending topological stress to DNA catenation and causes camptothecin hypersensitivity. Through synthetic viability screening, we discovered that histone H4 K16 deacetylation drives the sensitivity of yeast cells to camptothecin and that inactivation of this pathway by mutating H4 K16 or the genes SIR1-4 suppresses much of the hypersensitivity of tof1∆ strains towards this agent. We show that disruption of rDNA or telomeric silencing does not mediate camptothecin resistance but that disruption of Sir1-dependent chromatin domains is sufficient to suppress camptothecin sensitivity in wild-type and tof1∆ cells. We suggest that topoisomerase 1 inhibition in proximity of these domains causes topological stress that leads to DNA hypercatenation, especially in the absence of the Tof1/Csm3 complex. Finally, we provide evidence of the evolutionarily conservation of this mechanism.


Asunto(s)
Camptotecina/farmacología , Cromatina , Proteínas de Saccharomyces cerevisiae/metabolismo , Benzamidas/farmacología , Camptotecina/metabolismo , Proteínas de Ciclo Celular , Daño del ADN , Replicación del ADN , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN de Hongos/genética , ADN Ribosómico/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Naftoles/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo
7.
Mol Cell ; 40(1): 50-62, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20932474

RESUMEN

Ultraviolet (UV) light induces DNA-damage checkpoints and mutagenesis, which are involved in cancer protection and tumorigenesis, respectively. How cells identify DNA lesions and convert them to checkpoint-activating structures is a major question. We show that during repair of UV lesions in noncycling cells, Exo1-mediated processing of nucleotide excision repair (NER) intermediates competes with repair DNA synthesis. Impediments of the refilling reaction allow Exo1 to generate extended ssDNA gaps, detectable by electron microscopy, which drive Mec1 kinase activation and will be refilled by long-patch repair synthesis, as shown by DNA combing. We provide evidence that this mechanism may be stimulated by closely opposing UV lesions, represents a strategy to redirect problematic repair intermediates to alternative repair pathways, and may also be extended to physically different DNA damages. Our work has significant implications for understanding the coordination between repair of DNA lesions and checkpoint pathways to preserve genome stability.


Asunto(s)
Ciclo Celular , Cromosomas Fúngicos , Daño del ADN , Reparación del ADN , ADN de Hongos/metabolismo , ADN de Cadena Simple/metabolismo , Exodesoxirribonucleasas/metabolismo , Saccharomyces cerevisiae/enzimología , Ciclo Celular/genética , Ciclo Celular/efectos de la radiación , Cromosomas Fúngicos/efectos de la radiación , Cromosomas Fúngicos/ultraestructura , Reparación del ADN/efectos de la radiación , ADN de Hongos/efectos de la radiación , ADN de Hongos/ultraestructura , ADN de Cadena Simple/ultraestructura , Relación Dosis-Respuesta en la Radiación , Activación Enzimática , Exodesoxirribonucleasas/genética , Regulación Fúngica de la Expresión Génica , Inestabilidad Genómica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Rayos Ultravioleta
8.
PLoS Genet ; 7(3): e1002022, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21436894

RESUMEN

Following DNA damage or replication stress, budding yeast cells activate the Rad53 checkpoint kinase, promoting genome stability in these challenging conditions. The DNA damage and replication checkpoint pathways are partially overlapping, sharing several factors, but are also differentiated at various levels. The upstream kinase Mec1 is required to activate both signaling cascades together with the 9-1-1 PCNA-like complex and the Dpb11 (hTopBP1) protein. After DNA damage, Dpb11 is also needed to recruit the adaptor protein Rad9 (h53BP1). Here we analyzed the mechanisms leading to Mec1 activation in vivo after DNA damage and replication stress. We found that a ddc1Δdpb11-1 double mutant strain displays a synthetic defect in Rad53 and H2A phosphorylation and is extremely sensitive to hydroxyurea (HU), indicating that Dpb11 and the 9-1-1 complex independently promote Mec1 activation. A similar phenotype is observed when both the 9-1-1 complex and the Dpb4 non-essential subunit of DNA polymerase ε (Polε) are contemporarily absent, indicating that checkpoint activation in response to replication stress is achieved through two independent pathways, requiring the 9-1-1 complex and Polε.


Asunto(s)
ADN Polimerasa II/metabolismo , Replicación del ADN , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Activación Enzimática , Mitosis/fisiología , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Ribonucleótido Reductasas/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Rayos Ultravioleta
9.
bioRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352366

RESUMEN

The O- GlcNAc transferase OGT interacts robustly with all three mammalian TET methylcytosine dioxygenases. We show here that deletion of the Ogt gene in mouse embryonic stem cells (mESC) results in a widespread increase in the TET product 5-hydroxymethylcytosine (5hmC) in both euchromatic and heterochromatic compartments, with concomitant reduction of the TET substrate 5-methylcytosine (5mC) at the same genomic regions. mESC engineered to abolish the TET1-OGT interaction likewise displayed a genome-wide decrease of 5mC. DNA hypomethylation in OGT-deficient cells was accompanied by de-repression of transposable elements (TEs) predominantly located in heterochromatin, and this increase in TE expression was sometimes accompanied by increased cis -expression of genes and exons located 3' of the expressed TE. Thus, the TET-OGT interaction prevents DNA demethylation and TE expression in heterochromatin by restraining TET activity genome-wide. We suggest that OGT protects the genome against DNA hypomethylation and impaired heterochromatin integrity, preventing the aberrant increase in TE expression observed in cancer, autoimmune-inflammatory diseases, cellular senescence and ageing.

10.
bioRxiv ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39253426

RESUMEN

Epigenetic mechanisms govern the transcriptional activity of lineage-specifying enhancers; but recent work challenges the dogma that joint chromatin accessibility and DNA demethylation are prerequisites for transcription. To understand this paradox, we established a highly-resolved timeline of DNA demethylation, chromatin accessibility, and transcription factor occupancy during neural progenitor cell differentiation. We show thousands of enhancers undergo rapid, transient accessibility changes associated with distinct periods of transcription factor expression. However, most DNA methylation changes are unidirectional and delayed relative to chromatin dynamics, creating transiently discordant epigenetic states. Genome-wide detection of 5-hydroxymethylcytosine further revealed active demethylation begins ahead of chromatin and transcription factor activity, while enhancer hypomethylation persists long after these activities have dissipated. We demonstrate that these timepoint specific methylation states predict past, present and future chromatin accessibility using machine learning models. Thus, chromatin and DNA methylation collaborate on different timescales to mediate short and long-term enhancer regulation during cell fate specification.

11.
Res Sq ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39070619

RESUMEN

With age, hematopoietic stem cells can acquire somatic mutations in leukemogenic genes that confer a proliferative advantage in a phenomenon termed "clonal hematopoiesis of indeterminate potential" (CHIP). How these mutations confer a proliferative advantage and result in increased risk for numerous age-related diseases remains poorly understood. We conducted a multiracial meta-analysis of epigenome-wide association studies (EWAS) of CHIP and its subtypes in four cohorts (N=8196) to elucidate the molecular mechanisms underlying CHIP and illuminate how these changes influence cardiovascular disease risk. The EWAS findings were functionally validated using human hematopoietic stem cell (HSC) models of CHIP. A total of 9615 CpGs were associated with any CHIP, 5990 with DNMT3A CHIP, 5633 with TET2 CHIP, and 6078 with ASXL1 CHIP (P <1×10-7). CpGs associated with CHIP subtypes overlapped moderately, and the genome-wide DNA methylation directions of effect were opposite for TET2 and DNMT3A CHIP, consistent with their opposing effects on global DNA methylation. There was high directional concordance between the CpGs shared from the meta-EWAS and human edited CHIP HSCs. Expression quantitative trait methylation analysis further identified transcriptomic changes associated with CHIP-associated CpGs. Causal inference analyses revealed 261 CHIP-associated CpGs associated with cardiovascular traits and all-cause mortality (FDR adjusted p-value <0.05). Taken together, our study sheds light on the epigenetic changes impacted by CHIP and their associations with age-related disease outcomes. The novel genes and pathways linked to the epigenetic features of CHIP may serve as therapeutic targets for preventing or treating CHIP-mediated diseases.

12.
PLoS Genet ; 6(8)2010 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-20700441

RESUMEN

Saccharomyces cerevisiae Rad9 is required for an effective DNA damage response throughout the cell cycle. Assembly of Rad9 on chromatin after DNA damage is promoted by histone modifications that create docking sites for Rad9 recruitment, allowing checkpoint activation. Rad53 phosphorylation is also dependent upon BRCT-directed Rad9 oligomerization; however, the crosstalk between these molecular determinants and their functional significance are poorly understood. Here we report that, in the G1 and M phases of the cell cycle, both constitutive and DNA damage-dependent Rad9 chromatin association require its BRCT domains. In G1 cells, GST or FKBP dimerization motifs can substitute to the BRCT domains for Rad9 chromatin binding and checkpoint function. Conversely, forced Rad9 dimerization in M phase fails to promote its recruitment onto DNA, although it supports Rad9 checkpoint function. In fact, a parallel pathway, independent on histone modifications and governed by CDK1 activity, allows checkpoint activation in the absence of Rad9 chromatin binding. CDK1-dependent phosphorylation of Rad9 on Ser11 leads to specific interaction with Dpb11, allowing Rad53 activation and bypassing the requirement for the histone branch.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Cromatina/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromatina/genética , Daño del ADN , Dimerización , Unión Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética
13.
Cell Genom ; 3(8): 100362, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37601970

RESUMEN

Obesity contributes substantially to the global burden of disease and has a significant heritable component. Recent large-scale exome sequencing studies identified several genes in which rare, protein-coding variants have large effects on adult body mass index (BMI). Here we extended such work by performing sex-stratified associations in the UK Biobank study (N∼420,000). We identified genes in which rare heterozygous loss-of-function increases adult BMI in women (DIDO1, PTPRG, and SLC12A5) and in men (SLTM), with effect sizes up to ∼8 kg/m2. This is complemented by analyses implicating rare variants in OBSCN and MADD for recalled childhood adiposity. The known functions of these genes, as well as findings of common variant genome-wide pathway enrichment analyses, suggest a role for neuron death, apoptosis, and DNA damage response mechanisms in the susceptibility to obesity across the life-course. These findings highlight the importance of considering sex-specific and life-course effects in the genetic regulation of obesity.

14.
Sci Rep ; 8(1): 6161, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670134

RESUMEN

Establishing genetic and chemo-genetic interactions has played key roles in elucidating mechanisms by which certain chemicals perturb cellular functions. In contrast to gene disruption/depletion strategies to identify mechanisms of drug resistance, searching for point-mutational genetic suppressors that can identify separation- or gain-of-function mutations has been limited. Here, by demonstrating its utility in identifying chemical-genetic suppressors of sensitivity to the DNA topoisomerase I poison camptothecin or the poly(ADP-ribose) polymerase inhibitor olaparib, we detail an approach allowing systematic, large-scale detection of spontaneous or chemically-induced suppressor mutations in yeast or haploid mammalian cells in a short timeframe, and with potential applications in other haploid systems. In addition to applications in molecular biology research, this protocol can be used to identify drug targets and predict drug-resistance mechanisms. Mapping suppressor mutations on the primary or tertiary structures of protein suppressor hits provides insights into functionally relevant protein domains. Importantly, we show that olaparib resistance is linked to missense mutations in the DNA binding regions of PARP1, but not in its catalytic domain. This provides experimental support to the concept of PARP1 trapping on DNA as the prime source of toxicity to PARP inhibitors, and points to a novel olaparib resistance mechanism with potential therapeutic implications.


Asunto(s)
Camptotecina/farmacología , ADN-Topoisomerasas de Tipo I/genética , Pruebas Genéticas , Estudio de Asociación del Genoma Completo , Dominios Proteicos/genética , Dominios y Motivos de Interacción de Proteínas , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Células Madre Embrionarias , Humanos , Ratones , Modelos Moleculares , Mutación , Poli(ADP-Ribosa) Polimerasa-1/química , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Conformación Proteica
15.
Nat Struct Mol Biol ; 19(1): 17-24, 2011 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-22139015

RESUMEN

In higher eukaryotes, the dynamics of replisome components during fork collapse and restart are poorly understood. Here we have reconstituted replication fork collapse and restart by inducing single-strand DNA lesions that create a double-strand break in one of the replicated sister chromatids after fork passage. We found that, upon fork collapse, the active CDC45-MCM-GINS (CMG) helicase complex loses its GINS subunit. A functional replisome is restored by the reloading of GINS and polymerase ɛ onto DNA in a fashion that is dependent on RAD51 and MRE11 but independent of replication origin assembly and firing. PCNA mutant alleles defective in break-induced replication (BIR) are unable to support restoration of replisome integrity. These results show that, in higher eukaryotes, replisomes are partially dismantled after fork collapse and fully re-established by a recombination-mediated process.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Recombinasa Rad51/metabolismo , Proteínas de Xenopus/metabolismo , Miembro 3 de la Subfamilia B de Transportadores de Casetes de Unión a ATP , Animales , Western Blotting , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Ensayo Cometa , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Cadena Simple , Proteínas de Unión al ADN/genética , Electroforesis en Gel de Agar , Femenino , Proteína Homóloga de MRE11 , Masculino , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Oocitos/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Recombinasa Rad51/genética , Proteínas Recombinantes/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis
16.
DNA Repair (Amst) ; 8(9): 1055-67, 2009 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-19497792

RESUMEN

In response to genomic insults cells trigger a signal transduction pathway, known as DNA damage checkpoint, whose role is to help the cell to cope with the damage by coordinating cell cycle progression, DNA replication and DNA repair mechanisms. Accumulating evidence suggests that activation of the first checkpoint kinase in the cascade is not due to the lesion itself, but it requires recognition and initial processing of the lesion by a specific repair mechanism. Repair enzymes likely convert a variety of physically and chemically different lesions to a unique common structure, a ssDNA region, which is the checkpoint triggering signal. Checkpoint kinases can modify the activity of repair mechanisms, allowing for efficient repair, on one side, and modulating the generation of the ssDNA signal, on the other. This strategy may be important to allow the most effective repair and a prompt recovery from the damage condition. Interestingly, at least in some cases, if the damage level is low enough the cell can deal with the lesions and it does not need to activate the checkpoint response. On the other hand if damage level is high or if the lesions are not rapidly repairable, checkpoint mechanisms become important for cell survival and preservation of genome integrity.


Asunto(s)
Ciclo Celular , Daño del ADN , Reparación del ADN , Animales , Disparidad de Par Base/efectos de la radiación , Ciclo Celular/efectos de la radiación , ADN/biosíntesis , Reparación del ADN/efectos de la radiación , Humanos , Rayos Ultravioleta
17.
Mol Cell Biol ; 28(15): 4782-93, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18541674

RESUMEN

Following genotoxic insults, eukaryotic cells trigger a signal transduction cascade known as the DNA damage checkpoint response, which involves the loading onto DNA of an apical kinase and several downstream factors. Chromatin modifications play an important role in recruiting checkpoint proteins. In budding yeast, methylated H3-K79 is bound by the checkpoint factor Rad9. Loss of Dot1 prevents H3-K79 methylation, leading to a checkpoint defect in the G(1) phase of the cell cycle and to a reduction of checkpoint activation in mitosis, suggesting that another pathway contributes to Rad9 recruitment in M phase. We found that the replication factor Dpb11 is the keystone of this second pathway. dot1Delta dpb11-1 mutant cells are sensitive to UV or Zeocin treatment and cannot activate Rad53 if irradiated in M phase. Our data suggest that Dpb11 is held in proximity to damaged DNA through an interaction with the phosphorylated 9-1-1 complex, leading to Mec1-dependent phosphorylation of Rad9. Dpb11 is also phosphorylated after DNA damage, and this modification is lost in a nonphosphorylatable ddc1-T602A mutant. Finally, we show that, in vivo, Dpb11 cooperates with Dot1 in promoting Rad9 phosphorylation but also contributes to the full activation of Mec1 kinase.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Saccharomycetales/efectos de la radiación , Rayos Ultravioleta , Secuencia de Consenso , Roturas del ADN de Doble Cadena/efectos de la radiación , Activación Enzimática/efectos de la radiación , Fosforilación , Fosfotirosina/metabolismo , Saccharomycetales/citología , Saccharomycetales/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA