Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34640678

RESUMEN

Due to a sedentary lifestyle, the amount of people suffering from musculoskeletal back diseases has increased over the last few decades. To monitor and cure these disabilities, sensors able to monitor the patient for long-term measurement during daily life and able to provide real-time feedback are required. There are only a few wearable systems that are capable to acquire muscle activity (sEMG) and posture at the same time. Moreover, previously reported systems do not target back sensor and typically comprise bulky uncomfortable solutions. In this paper, we present a new wearable sensor network that is designed to measure muscle activity and posture specialized for back measurement. Special care was taken to propose a discrete and comfortable solution. The prototype only measures 3.1 mm in thickness on the spine, making this sensor system the thinnest and lightest one in the literature to our best knowledge. After testing, it was shown that the sensor system is able to acquire two surface electromyography signals concurrently, to gather acceleration and rotation speed from the patient's lower back, and to transmit data to a computer or a smartphone via serial communication or Bluetooth low energy for a few hours for later processing and analysis.


Asunto(s)
Enfermedades Musculoesqueléticas , Dispositivos Electrónicos Vestibles , Electrónica , Humanos , Monitoreo Fisiológico , Teléfono Inteligente
2.
Int J Urol ; 27(6): 543-550, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32266758

RESUMEN

OBJECTIVES: To test the hypothesis that an implantable sensing system containing accelerometers can detect small-scale autonomous movements, also termed micromotions, which might be relevant to bladder physiology. METHODS: We developed a 6-mm submucosal implant containing a pressure sensor (MS5637) and a triaxial accelerometer (BMA280). Sensor prototypes were tested by implantation in the bladders of Gottingen minipigs. Repeated awake voiding cystometry was carried out with air-charged catheters in a standard urodynamic set-up as comparators. We identified four phases of voiding similar to cystometry in other animal models based on submucosal pressure. Acceleration signals were separated by frequency characteristics to isolate linear acceleration from the baseline acceleration. The total linear acceleration was calculated by the root mean square of the three measurement axes. Acceleration activity during voiding was investigated to adjacent 1-s windows and was compared with the registered pressure. RESULTS: We observed a total of 19 consecutive voids in five measurement sessions. A good correlation (r > 0.75) was observed between submucosal and catheter pressure in 14 of 19 premicturition traces. The peak-to-peak interval between maximum total linear acceleration was correlated with the interval between submucosal voiding pressure peaks (r = 0.760, P < 0.001). The total linear acceleration was higher during voiding compared with pre- and postmicturition periods (start of voiding/phase 1). CONCLUSIONS: To the best of our knowledge, this is the first report of bladder wall acceleration, a novel metric that reflects bladder wall movement. Submucosal sensors containing accelerometers can measure bladder pressure and acceleration.


Asunto(s)
Vejiga Urinaria , Urodinámica , Aceleración , Animales , Catéteres , Porcinos , Porcinos Enanos
3.
Sensors (Basel) ; 19(4)2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30781777

RESUMEN

This paper presents the design and fabrication process of a spherical-omnidirectional ultrasound transducer for underwater sensor network applications. The transducer is based on the vibration of two hemispheres with a thickness of 1 mm and an outer diameter of 10 mm, which are actuated by two piezoelectric ring elements. Since the ultrasound wave is generated by the vibration of the two hemispheres, a matching layer is not required. Silicon Carbide (SiC) is used as the material of the hemispherical shells of the transducer. The shells were fabricated by laser sintering as an additive manufacturing method, in which the hemispheres were built layer by layer from a powder bed. All manufactured transducers with an outer dimension of 10 × 14.2 mm and a center frequency of 155 kHz were measured in a water tank by a hydrophone or in mutual communication. The circumferential source level was measured to vary less than 5dB. The power consumption and the insertion loss of the transducer, ranging from 100 µ W to 2.4 mW and 21.2 dB, respectively, along with all other measurements, prove that the transducer can transmit and receive ultrasound waves omnidirectionally at tens of centimeters intervals with a decent power consumption and low actuation voltage.

4.
Sensors (Basel) ; 20(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31861791

RESUMEN

The detection and analysis of circulating tumor cells (CTCs) plays a crucial role in clinical practice. However, the heterogeneity and rarity of CTCs make their capture and separation from peripheral blood very difficult while maintaining their structural integrity and viability. We previously demonstrated the effectiveness of the Magnetic Cell Centrifuge Platform (MCCP), which combined the magnetic-labeling cell separation mechanism with the size-based method. In this paper, a comparison of the effectiveness of different microsieve pore geometries toward MCCP is demonstrated to improve the yield of the target cell capture. Firstly, models of a trapped cell with rectangular and circular pore geometries are presented to compare the contact force using finite element numerical simulations. The device performance is then evaluated with both constant pressure and constant flow rate experimental conditions. In addition, the efficient isolation of magnetically labeled Hela cells with red fluorescent proteins (target cells) from Hela cells with green fluorescent protein (background cells) is validated. The experimental results show that the circular sieves yield 97% purity of the target cells from the sample with a throughput of up to 2 µL/s and 66-fold sample enrichment. This finding will pave the way for the design of a higher efficient MCCP systems.

5.
Sensors (Basel) ; 18(2)2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29438344

RESUMEN

Sleep-related conditions require high-cost and low-comfort diagnosis at the hospital during one night or longer. To overcome this situation, this work aims to evaluate an unobtrusive monitoring technique for sleep apnea. This paper presents, for the first time, the evaluation of contactless capacitively-coupled electrocardiography (ccECG) signals for the extraction of sleep apnea features, together with a comparison of different signal quality indicators. A multichannel ccECG system is used to collect signals from 15 subjects in a sleep environment from different positions. Reference quality labels were assigned for every 30-s segment. Quality indicators were calculated, and their signal classification performance was evaluated. Features for the detection of sleep apnea were extracted from capacitive and reference signals. Sleep apnea features related to heart rate and heart rate variability achieved high similarity to the reference values, with p-values of 0.94 and 0.98, which is in line with the more than 95% beat-matching obtained. Features related to signal morphology presented lower similarity with the reference, although signal similarity metrics of correlation and coherence were relatively high. Quality-based automatic classification of the signals had a maximum accuracy of 91%. Best-performing quality indicators were based on template correlation and beat-detection. Results suggest that using unobtrusive cardiac signals for the automatic detection of sleep apnea can achieve similar performance as contact signals, and indicates clinical value of ccECG. Moreover, signal segments can automatically be classified by the proposed quality metrics as a pre-processing step. Including contactless respiration signals is likely to improve the performance and provide a complete unobtrusive cardiorespiratory monitoring solution; this is a promising alternative that will allow the screening of more patients with higher comfort, for a longer time, and at a reduced cost.


Asunto(s)
Electrocardiografía , Algoritmos , Frecuencia Cardíaca , Humanos , Respiración , Procesamiento de Señales Asistido por Computador , Síndromes de la Apnea del Sueño
6.
Biomed Microdevices ; 19(1): 1, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28070696

RESUMEN

A robust and low cost ionic liquid based strain sensor is fabricated for high strain measurements in biomedical applications (up to 40 % and higher). A tubular 5 mm long silicone microchannel with an inner diameter of 310 µm and an outer diameter of 650 µm is filled with an ionic liquid. Three ionic liquids have been investigated: 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide, ethylammonium nitrate and cholinium ethanoate. When the channel is axially stretched, geometrical deformations change the electrical impedance of the liquid channel. The sensors display a linear response and low hysteresis with an average gauge factors of 1.99 for strains up to 40 %. Additionally, to fix the sensor by surgical stitching to soft biological tissue, a sensor with tube clamps consisting of photopatternable SU-8 epoxy-based resin is proposed.


Asunto(s)
Líquidos Iónicos , Microtecnología/instrumentación , Estrés Mecánico , Costos y Análisis de Costo , Impedancia Eléctrica , Líquidos Iónicos/química , Compuestos Onio/química , Pirrolidinas/química
7.
Biomed Microdevices ; 19(3): 52, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28597392

RESUMEN

Acceleration signals, collected from the inner and the outer heart wall, offer a mean of assessing cardiac function during surgery. Accelerometric measurements can also provide detailed insights into myocardial motion during exploratory investigations. Two different implantable accelerometers to respectively record endocardial and epicardial vibrations, have been developed by packaging a commercially available capacitive transducer. The same coating materials have been deposited on the two devices to ensure biocompatibility of the implants: Parylene-C, medical epoxy and Polydimethylsiloxane (PDMS). The different position-specific requirements resulted in two very dissimilar sensor assemblies. The endocardial accelerometer, that measures accelerations from the inner surface of the heart during acute animal tests, is a 2 mm-radius hemisphere fixed on a polymethyl methacrylate (PMMA) rod to be inserted through the heart wall. The epicardial accelerometer, that monitors the motion of the outer surface of the heart, is a three-legged structure with a stretchable polytetrafluoroethylene (PTFE) reinforcement. This device can follow the continuous motion of the myocardium (the muscular tissue of the heart) during the cardiac cycle, without hindering its natural movement. Leakage currents lower than 1 µA have been measured during two weeks of continuous operation in saline. Both transducers have been used, during animal tests, to simultaneously record and compare acceleration signals from corresponding locations on the inner and the outer heart wall of a female sheep.


Asunto(s)
Acelerometría , Endocardio/fisiología , Pericardio/fisiología , Acelerometría/instrumentación , Acelerometría/métodos , Animales , Dimetilpolisiloxanos/química , Femenino , Polímeros/química , Polimetil Metacrilato/química , Ovinos , Xilenos/química
8.
Sensors (Basel) ; 17(10)2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29048396

RESUMEN

We present a high electrode density and high channel count CMOS (complementary metal-oxide-semiconductor) active neural probe containing 1344 neuron sized recording pixels (20 µm × 20 µm) and 12 reference pixels (20 µm × 80 µm), densely packed on a 50 µm thick, 100 µm wide, and 8 mm long shank. The active electrodes or pixels consist of dedicated in-situ circuits for signal source amplification, which are directly located under each electrode. The probe supports the simultaneous recording of all 1356 electrodes with sufficient signal to noise ratio for typical neuroscience applications. For enhanced performance, further noise reduction can be achieved while using half of the electrodes (678). Both of these numbers considerably surpass the state-of-the art active neural probes in both electrode count and number of recording channels. The measured input referred noise in the action potential band is 12.4 µVrms, while using 678 electrodes, with just 3 µW power dissipation per pixel and 45 µW per read-out channel (including data transmission).

9.
Anal Chem ; 88(17): 8596-603, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27448015

RESUMEN

The detection of single molecules in magnetic microbead microwell array formats revolutionized the development of digital bioassays. However, retrieval of individual magnetic beads from these arrays has not been realized until now despite having great potential for studying captured targets at the individual level. In this paper, optical tweezers were implemented on a digital microfluidic platform for accurate manipulation of single magnetic beads seeded in a microwell array. Successful optical trapping of magnetic beads was found to be dependent on Brownian motion of the beads, suggesting a 99% chance of trapping a vibrating bead. A tailor-made experimental design was used to screen the effect of bead type, ionic buffer strength, surfactant type, and concentration on the Brownian activity of beads in microwells. With the optimal conditions, the manipulation of magnetic beads was demonstrated by their trapping, retrieving, transporting, and repositioning to a desired microwell on the array. The presented platform combines the strengths of digital microfluidics, digital bioassays, and optical tweezers, resulting in a powerful dynamic microwell array system for single molecule and single cell studies.


Asunto(s)
Técnicas Analíticas Microfluídicas , Pinzas Ópticas , Campos Magnéticos , Técnicas Analíticas Microfluídicas/instrumentación , Estreptavidina/química
10.
Sensors (Basel) ; 16(8)2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27537882

RESUMEN

This work explores the benefits of linear-mode avalanche photodiodes (APDs) in high-speed CMOS imaging as compared to different approaches present in literature. Analysis of APDs biased below their breakdown voltage employed in single-photon counting mode is also discussed, showing a potentially interesting alternative to existing Geiger-mode APDs. An overview of the recently presented gated pinned avalanche photodiode pixel concept is provided, as well as the first experimental results on a 8 × 16 pixel test array. Full feasibility of the proposed pixel concept is not demonstrated; however, informative data is obtained from the sensor operating under -32 V substrate bias and clearly exhibiting wavelength-dependent gain in frontside illumination. The readout of the chip designed in standard 130 nm CMOS technology shows no dependence on the high-voltage bias. Readout noise level of 15 e - rms, full well capacity of 8000 e - , and the conversion gain of 75 µV / e - are extracted from the photon-transfer measurements. The gain characteristics of the avalanche junction are characterized on separate test diodes showing a multiplication factor of 1.6 for red light in frontside illumination.

11.
Biomed Microdevices ; 15(3): 481-93, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23417326

RESUMEN

We have developed a novel type of neural electrode array for future brain-machine interfaces (BMI) and neural implants requiring high resolution recording and stimulation on the surface of brain lesions or on the cortex. The devices differ on two points from commonly used thin film electrode arrays: first, the thin film backbone of the implant is exceptionally thin (down to 5 microns) and finely patterned into spring-like structures. This increases the flexibility of the electrode array and allows stretching and conforming better to a quasi spherical cavity surface. Second, the thin film backbone of the device is reinforced with a porous layer of resorbable chitosan. This design aims at minimal invasiveness and low mechanical irritation during prolonged use, while the chitosan matrix ensures the implant is stiff enough for practical handling during the implantation procedure and dissolves afterwards. Furthermore, the chitosan adds haemostatic and antiseptic properties to the implant and improves adhesion. In the article, the design and fabrication process are presented. In vitro and long term in vivo test results over a 12 month period are shown. By adopting the use of a resorbable scaffold-like material as main constituent of neural implants, the presented work opens up the possibility of applying tissue engineering techniques to further improve neural implant technology.


Asunto(s)
Encéfalo/metabolismo , Quitosano/metabolismo , Electrodos Implantados , Animales , Encéfalo/diagnóstico por imagen , Interfaces Cerebro-Computador , Quitosano/química , Quitosano/farmacología , Electrodos Implantados/microbiología , Diseño de Equipo , Hemostasis/efectos de los fármacos , Porosidad , Ratas , Ratas Wistar , Tomografía Computarizada por Rayos X
12.
Bioelectromagnetics ; 34(7): 563-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23740872

RESUMEN

For the first time, a personal distributed exposimeter (PDE) for radio frequency (RF) measurements is presented. This PDE is designed based on numerical simulations and is experimentally evaluated using textile antennas and wearable electronics. A prototype of the PDE is calibrated in an anechoic chamber. Compared to conventional exposimeters, which only measure in one position on the body, an excellent isotropy of 0.5 dB (a factor of 1.1) and a 95% confidence interval of 7 dB (a factor of 5) on power densities are measured.


Asunto(s)
Ambiente , Fantasmas de Imagen , Ondas de Radio , Radiometría/instrumentación , Intervalos de Confianza , Humanos , Masculino
13.
Anal Bioanal Chem ; 404(10): 2887-94, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22926129

RESUMEN

Label-free biosensing with silicon nanophotonic microring resonator sensors has proven to be an excellent sensing technique for achieving high-throughput and high sensitivity, comparing favorably with other labeled and label-free sensing techniques. However, as in any biosensing platform, silicon nanophotonic microring resonator sensors require a fluidic component which allows the continuous delivery of the sample to the sensor surface. This component is typically based on microchannels in polydimethylsiloxane or other materials, which add cost and complexity to the system. The use of microdroplets in a digital microfluidic system, instead of continuous flows, is one of the recent trends in the field, where microliter- to picoliter-sized droplets are generated, transported, mixed, and split, thereby creating miniaturized reaction chambers which can be controlled individually in time and space. This avoids cross talk between samples or reagents and allows fluid plugs to be manipulated on reconfigurable paths, which cannot be achieved using the more established and more complex technology of microfluidic channels where droplets are controlled in series. It has great potential for high-throughput liquid handling, while avoiding on-chip cross-contamination. We present the integration of two miniaturized technologies: label-free silicon nanophotonic microring resonator sensors and digital microfluidics, providing an alternative to the typical microfluidic system based on microchannels. The performance of this combined system is demonstrated by performing proof-of-principle measurements of glucose, sodium chloride, and ethanol concentrations. These results show that multiplexed real-time detection and analysis, great flexibility, and portability make the combination of these technologies an ideal platform for easy and fast use in any laboratory.


Asunto(s)
Etanol/análisis , Glucosa/análisis , Técnicas Analíticas Microfluídicas/instrumentación , Refractometría/instrumentación , Silicio/química , Cloruro de Sodio/análisis , Técnicas Biosensibles/instrumentación , Diseño de Equipo , Fotones
14.
Micromachines (Basel) ; 11(3)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204493

RESUMEN

This paper presents a novel fabrication process that allows integration of polydimethylsiloxane (PDMS)-based microfluidic channels and metal electrodes on a wafer with a micrometer-range alignment accuracy. This high level of alignment accuracy enables integration of microwave and microfluidic technologies, and furthermore accurate microwave dielectric characterization of biological liquids and chemical compounds on a nanoliter scale. The microfluidic interface between the pump feed lines and the fluidic channels was obtained using magnets fluidic connection. The tube-channel interference and the fluidic channel-wafer adhesion was evaluated, and up to a pressure of 700 mBar no leakage was observed. The developed manufacturing process was tested on a design of a microwave-microfluidic capacitive sensor. An interdigital capacitor (IDC) and a microfluidic channel were manufactured with an alignment accuracy of 2.5 µm. The manufactured IDC sensor was used to demonstrate microwave dielectric sensing on deionized water and saline solutions with concentrations of 0.1, 0.5, 1, and 2.5 M.

15.
J Neural Eng ; 17(1): 016046, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31791021

RESUMEN

OBJECTIVE: Long-term electrophysiological recordings of neural activity in freely behaving animals are indispensable to advance the understanding of complex brain function. It is a technical challenge to chronically monitor the detailed activity across multiple distributed brain regions in freely behaving animals over a period of months. Here we present a new implant for inserting multiple flexible polyimide probes into freely behaving rats for monitoring the brain activity over a long time period. APPROACH: This brain implant integrates multiple flexible probes in small micromanipulator devices that ensure free behaviour of the animal. The probes are micromachined and the positioning mechanism is 3D-printed using stereolithography. Each probe is lowered by a screw-driven shuttle and guided through an exit tip before penetrating the rat's brain. MAIN RESULTS: The brain implant consists of 16 individually lowerable flexible polyimide probes that contain 16 embedded electrodes adding up to a total of 256 recording channels. The total travel distance is 8 mm. The assembly time of the device was only one day. The electrode impedance values had a mean of 335 kΩ and sample standard deviation of 107 kΩ after gold plating, excluding outliers. SIGNIFICANCE: For the first time, hyperdrive-assisted insertion of flexible multichannel probes was demonstrated. Local field potentials and neuronal spiking activity from freely behaving rats were recorded over months.


Asunto(s)
Encéfalo/fisiología , Electrodos Implantados , Locomoción/fisiología , Microtecnología/métodos , Neuronas/fisiología , Potenciales de Acción/fisiología , Animales , Encéfalo/citología , Microtecnología/instrumentación , Ratas , Ratas Long-Evans
16.
Micromachines (Basel) ; 11(3)2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32183431

RESUMEN

When screening microbial populations or consortia for interesting cells, their selective retrieval for further study can be of great interest. To this end, traditional fluorescence activated cell sorting (FACS) and optical tweezers (OT) enabled methods have typically been used. However, the former, although allowing cell sorting, fails to track dynamic cell behavior, while the latter has been limited to complex channel-based microfluidic platforms. In this study, digital microfluidics (DMF) was integrated with OT for selective trapping, relocation, and further proliferation of single bacterial cells, while offering continuous imaging of cells to evaluate dynamic cell behavior. To enable this, magnetic beads coated with Salmonella Typhimurium-targeting antibodies were seeded in the microwell array of the DMF platform, and used to capture single cells of a fluorescent S. Typhimurium population. Next, OT were used to select a bead with a bacterium of interest, based on its fluorescent expression, and to relocate this bead to a different microwell on the same or different array. Using an agar patch affixed on top, the relocated bacterium was subsequently allowed to proliferate. Our OT-integrated DMF platform thus successfully enabled selective trapping, retrieval, relocation, and proliferation of bacteria of interest at single-cell level, thereby enabling their downstream analysis.

17.
PLoS One ; 14(12): e0225821, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31790475

RESUMEN

Traditional urodynamics have poor correlation with urological symptoms. Ambulatory urodynamics may improve this correlation but the need for a transurethral catheter and the time-consuming nature of this examination limits its use. Therefore, the objective of this study was to develop a wireless real-time bladder pressure measurement device for repeated and prolonged-term measurement of bladder behavior in awake pigs. The Bladder Pill is an intravesical device with a pressure microsensor and a 3-dimensional inductive coupling coil for energy supply. A corresponding external coil provides wireless power transmission and real-time communication of bladder pressure data. To test the correlation between the pressure data measured by the device and by standard methods, we compared static water column pressures with this device and water-filled urodynamic catheter systems. In vivo assessment of awake voiding by the pill was done by introducing the bladder pill into the bladder of Göttingen minipigs. An air-charged urodynamic catheter was introduced transurethrally as control for pressure measurements. The optimal physical configuration of the pill was investigated to maximize the containment in the bladder. We used two versions of external signal receivers (one waistband and one rectangular frame) to test the optimal external signal capture. Next to that, we performed short-term and medium-term comparative pressure studies. The in vitro static pressure measurement demonstrated a mean difference of less than 1 cm H2O between the methods. The optimal design of the pill for maximal retainment in the bladder proved to be a pigtail configuration. The bending of the device during bladder contractions caused offset of 2.7 +/- 1.4 cm H2O (mean +/- SD) on the pressure measurements. The rectangular frame performed signal capture during 5 consecutive voids with a good correlation of the pressure measurements. The device can be inserted through the urethra and is retrieved using string or endoscopic extraction. In conclusion, wireless long-term measurement of bladder pressure is demonstrated and yields comparable results to current available catheter methods of measurement in a pig model.


Asunto(s)
Equipos y Suministros , Vejiga Urinaria/fisiología , Micción/fisiología , Vigilia/fisiología , Tecnología Inalámbrica/instrumentación , Animales , Femenino , Porcinos , Porcinos Enanos
18.
Eur J Phys Rehabil Med ; 55(2): 265-280, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30311493

RESUMEN

INTRODUCTION: The increasing popularity of inertial sensors in clinical practice is not supported by precise information on their reliability or guidelines for their use in rehabilitation. The authors investigated the state of the literature concerning the use of inertial sensors for gait analysis in both healthy and pathological adults comparing traditional systems. Furthermore, trying to define directions for clinicians. EVIDENCE ACQUISITION: In accordance with the PRISMA statement, authors searched in PubMed, Web of Science and Scopus all paper published from January 1st, 2005 until December 31st, 2017. They included both healthy and pathological adults' subjects as population, wearable or inertial sensors used for gait analysis and compared with classical gait analysis performed in a Motion Lab as intervention and comparison, gait parameters as outcomes. Considering the methodological quality, authors focused on: sample; description of the study; type of gait analysis used for comparison; type of sensor; sensor placement on the body; gait task requested. EVIDENCE SYNTHESIS: From a total of 888 articles, 16 manuscripts were selected and 7 of them were considered for meta-analysis for different gait parameters. Demographic data, tested devices, reference systems, test procedures and outcomes were analyzed. CONCLUSIONS: Our results show a good agreement between inertial sensors and classical gait analysis for some gait parameters, supporting their use as a solution for capturing kinematic information over an extended space and time and even outside a laboratory in real-life conditions. Authors can support the use of portable inertial sensors for a practical gait analysis in clinical setting with good reliability. It will then be the experience of the clinician to direct the decision-making process.


Asunto(s)
Análisis de la Marcha/instrumentación , Dispositivos Electrónicos Vestibles , Humanos
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5621-5624, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31947128

RESUMEN

Capacitively-coupled ECG (ccECG) and bioimpedance (ccBIOZ) measurements are highly sensitive to motion artefacts. This limits their use in real-life situations. This work presents an array-based system for the simultaneous acquisition of ccECG and ccBIOZ, together with a quality-based electrode scanning approach for ccECG. This allows to increase the time coverage of contactless measurements in real-life situations and reduces the impact of artefacts. This solution was evaluated on a car seat and a mattress prototype. Results show the benefit of this combined array and algorithm approach: for every body position the algorithm was able to find more than one electrode combination providing high-quality ccECG. Night-long recordings were also performed, resulting in a mean time coverage of 72.5%.


Asunto(s)
Algoritmos , Artefactos , Electrocardiografía , Lechos , Electrodos , Humanos
20.
Micromachines (Basel) ; 10(1)2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30658409

RESUMEN

In the quest for chronically reliable and bio-tolerable brain interfaces there has been a steady evolution towards the use of highly flexible, polymer-based electrode arrays. The reduced mechanical mismatch between implant and brain tissue has shown to reduce the evoked immune response, which in turn has a positive effect on signal stability and noise. Unfortunately, the low stiffness of the implants also has practical repercussions, making surgical insertion extremely difficult. In this work we explore the use of dextran as a coating material that temporarily stiffens the implant, preventing buckling during insertion. The mechanical properties of dextran coated neural probes are characterized, as well as the different parameters which influence the dissolution rate. Tuning parameters, such as coating thickness and molecular weight of the used dextran, allows customization of the stiffness and dissolution time to precisely match the user's needs. Finally, the immunological response to the coated electrodes was analyzed by performing a histological examination after four months of in vivo testing. The results indicated that a very limited amount of glial scar tissue was formed. Neurons have also infiltrated the area that was initially occupied by the dissolving dextran coating. There was no noticeable drop in neuron density around the site of implantation, confirming the suitability of the coating as a temporary aid during implantation of highly flexible polymer-based neural probes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA