Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Z Kinder Jugendpsychiatr Psychother ; 48(6): 478-489, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33172359

RESUMEN

Objective: Developmental dyslexia is a highly heritable specific reading and writing disability. To identify a possible new locus and candidate gene for this disability, we investigated a four-generation pedigree where transmission of dyslexia is consistent with an autosomal dominant inheritance pattern. Methods: We performed genome wide array-based SNP genotyping and parametric linkage analysis and sequencing analysis of protein-coding exons, exon-intron boundaries and conserved extragenic regions within the haplotype cosegregating with dyslexia in DNA from one affected and one unaffected family member. Cosegregation was confirmed by sequencing all available family members. Additionally, we analyzed 96 dyslexic individuals who had previously shown positive LOD scores on chromosome 4q28 as well as an even larger sample (n = 2591). Results: We found a single prominent linkage interval on chromosome 4q, where sequence analysis revealed a nucleotide variant in the 3' UTR of brain expressed SPRY1 in the dyslexic family member that cosegregated with dyslexia. This sequence alteration might affect the binding efficiency of the IGF2BP1 RNA-binding protein and thus influence the expression level of the SPRY1 gene product. An analysis of 96 individuals from a cohort of dyslexic individuals revealed a second heterozygous variant in this gene, which was absent in the unaffected sister of the proband. An investigation of the region in a much larger sample further found a nominal p-value of 0.0016 for verbal short-term memory (digit span) in 2,591 individuals for a neighboring SNV. After correcting for the local number of analyzed SNVs, and after taking into account linkage disequilibrium, we found this corresponds to a p-value of 0.0678 for this phenotype. Conclusions: We describe a new locus for familial dyslexia and discuss the possibility that SPRY1 might play a role in the etiology of a monogenic form of dyslexia.


Asunto(s)
Cromosomas Humanos Par 4/genética , Dislexia/genética , Regiones no Traducidas 3'/genética , Salud de la Familia , Humanos , Escala de Lod , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Linaje , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo
2.
Am J Hum Genet ; 89(1): 176-82, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21763484

RESUMEN

We have used genome-wide genotyping to identify an overlapping homozygosity-by-descent locus on chromosome 9q34.3 (MRT15) in four consanguineous families affected by nonsyndromic autosomal-recessive intellectual disability (NS-ARID) and one in which the patients show additional clinical features. Four of the families are from Pakistan, and one is from Iran. Using a combination of next-generation sequencing and Sanger sequencing, we have identified mutations in the gene MAN1B1, encoding a mannosyl oligosaccharide, alpha 1,2-mannosidase. In one Pakistani family, MR43, a homozygous nonsense mutation (RefSeq number NM_016219.3: c.1418G>A [p.Trp473*]), segregated with intellectual disability and additional dysmorphic features. We also identified the missense mutation c. 1189G>A (p.Glu397Lys; RefSeq number NM_016219.3), which segregates with NS-ARID in three families who come from the same village and probably have shared inheritance. In the Iranian family, the missense mutation c.1000C>T (p.Arg334Cys; RefSeq number NM_016219.3) also segregates with NS-ARID. Both missense mutations are at amino acid residues that are conserved across the animal kingdom, and they either reduce k(cat) by ∼1300-fold or disrupt stable protein expression in mammalian cells. MAN1B1 is one of the few NS-ARID genes with an elevated mutation frequency in patients with NS-ARID from different populations.


Asunto(s)
Genes Recesivos , Discapacidad Intelectual/genética , Manosidasas/genética , Proteínas de la Membrana/genética , Mutación Missense , Adolescente , Adulto , Secuencia de Aminoácidos , Pueblo Asiatico/genética , Niño , Cromosomas Humanos Par 9 , Consanguinidad , Femenino , Ligamiento Genético , Estudio de Asociación del Genoma Completo/métodos , Homocigoto , Humanos , Irán , Masculino , Manosidasas/metabolismo , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Pakistán , Linaje , Polimorfismo de Nucleótido Simple , Estructura Terciaria de Proteína , Adulto Joven
3.
Hum Genet ; 129(2): 141-8, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21063731

RESUMEN

Mental retardation (MR) has a worldwide prevalence of around 2% and is a frequent cause of severe disability. Significant excess of MR in the progeny of consanguineous matings as well as functional considerations suggest that autosomal recessive forms of MR (ARMR) must be relatively common. To shed more light on the causes of autosomal recessive MR (ARMR), we have set out in 2003 to perform systematic clinical studies and autozygosity mapping in large consanguineous Iranian families with non-syndromic ARMR (NS-ARMR). As previously reported (Najmabadi et al. in Hum Genet 121:43-48, 2007), this led us to the identification of 12 novel ARMR loci, 8 of which had a significant LOD score (OMIM: MRT5-12). In the meantime, we and others have found causative gene defects in two of these intervals. Moreover, as reported here, tripling the size of our cohort has enabled us to identify 27 additional unrelated families with NS-ARMR and single-linkage intervals; 14 of these define novel loci for non-syndromic ARMR. Altogether, 13 out of 39 single linkage intervals observed in our cohort were found to cluster at 6 different loci on chromosomes, i.e., 1p34, 4q27, 5p15, 9q34, 11p11-q13 and 19q13, respectively. Five of these clusters consist of two significantly overlapping linkage intervals, and on chr 1p34, three single linkage intervals coincide, including the previously described MRT12 locus. The probability for this distribution to be due to chance is only 1.14 × 10(-5), as shown by Monte Carlo simulation. Thus, in contrast to our previous conclusions, these novel data indicate that common molecular causes of NS-ARMR do exist, and in the Iranian population, the most frequent ones may well account for several percent of the patients. These findings will be instrumental in the identification of the underlying genes.


Asunto(s)
Discapacidad Intelectual/genética , Mutación , Trastornos de los Cromosomas , Familia , Genes Recesivos , Irán , Método de Montecarlo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA