Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 257: 119287, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38823610

RESUMEN

Heavy metal pollution in soil has emerged as a major environmental concern. This can be attributed to human activities such as mining, modern agriculture, and industrialization. This study was conducted to determine how heavy metals spread from mine tailings to surrounding farmland. Metal absorption and accumulation were also investigated in the root and shoot biomass of tapioca crops grown in those farmlands. Metal concentrations in MTAS1 were 85.3 ± 1.2, 45.8 ± 1.5, 134.8 ± 1.7, 92.4 ± 2.2, and 78.95 ± 1.4 mg kg-1, respectively. Heavy metal concentrations in MTAS2 and MTAS3 were found to be 79.62 ± 1.6, 75.4 ± 1.5, 41.31 ± 1.1, 47.8 ± 1.6, 142.5 ± 2.1, 128.4 ± 1.4, 86.2 ± 1.9, 79.5 ± 1.3, and 83.4 ± 1.2 mg kg-1, respectively. Tapioca crop shoot and root biomass grown at these metal polluted sites absorbed and accumulated significant amounts of Cd, Cu, Zn, Pb, Ni, and Mn. Notably, the metal content of the tapioca crop's root and shoot biomass exceeded national standards.

2.
Environ Res ; 241: 117663, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37980981

RESUMEN

Given the challenges of urbanization and rapid resource depletion, policymakers have been compelled to abandon the old sequential paradigm of "take-make-use-dispose" to a circular approach that prioritizes preservation of natural resources. The circular economy represents a sustainable management concept that focuses on reducing, recovering, reusing, and recycling waste. While significant strides have been made in implementing circular economy principles in various industries such as automotive, electronics, and construction, particular attention has been given to the water and wastewater domains due to imbalances in water resources. Here we review the global progress of circular economy adoptability in the water and wastewater domains, considering technical, environmental, economic, and social perspectives. It assesses the current state of circular economy integration in the wastewater domain worldwide and presents approaches to promote and accelerate its adoption. The study critically examines the principles of waste management, known as the 6Rs (reclaim, restore, recycle, reduce, recover, reuse), in order to formulate effective strategies for integrating circular economy practices in the water and wastewater domains. Additionally, the study provides an overview of existing research conducted on different aspects of circular economy. Finally, the study analyzes the challenges and opportunities associated with implementing circular economy principles in the water sector.


Asunto(s)
Administración de Residuos , Aguas Residuales , Agua , Reciclaje , Recursos Hídricos
3.
Environ Res ; : 119352, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876416

RESUMEN

Renewable energy research is burgeoning with the anticipation of finding neat liquid fuel. Ultra sonification assisted biodiesel was derived from red algae Cyanidioschyzon merolae, with BD yield of 98.9%. The results of GC MS of the prepared biodiesel showed higher concentration of methyl palmitate, methyl oleate, and stearate. This composition is appreciable, as this plays significant in desirable pour & cloud point properties. NMR spectrum revealed the ester linkages, presence of olefins, and α methyl position in olefins. Mixture of 30wt% of biodiesel in diesel exhibited work efficiency at low pour point and, lower viscosity of biodiesel was observed. CeO2 and Fe2O3 nano particles were bio reduced, and were added as nano additive in biodiesel. 1:1 ratio of CeO2 and Fe2O3 added to biodiesel maximised the oxygen storage capacity of CeO2, and improved the combustion reactions of Fe2O3. Further, this combination produced a satisfactory Calorific value. Imbalanced ratios disrupted the catalytic and oxygen storage effects, reduced the overall energy release and calorific value of the biodiesel blend. Pour point and cetane number value of A/F/C-1 was around -7 oC and 53 respectively, and was better than other compositions. 1:1 mass ratio of NPS blended with 30wt% BD in diesel showed tremendous increase in BTE, torque, and power. HC, NOX, and SOX emissions were reduced by 42.8%, 19.3%, and 57% respectively. CeO2 favourably improved the oxygen storage capacity of the fuel, whereas Fe2O3 showed decrease in formation of gums and sediments in biodiesel.

4.
Environ Res ; 258: 119427, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38889840

RESUMEN

This review approach is divided into two scopes to focus the pollution threats. We cover the applications of nanomaterials to curtail the pollution induced by fossil fuel combustion, and textile dye effluents. Toxic emissions released from automobile exhaust that comprise of NOX. SOX and PAHs compile to harsh breathing and respiratory troubles. The effluents generated from the mammoth textile and leather industry is potential threat to beget massive health issues to human life, and environmental problem. Part I projects the broad envisage on role of nano materials in production of alternative biofuels. In addition, green sources for synthesizing nanomaterials are given special importance. Nano catalyst's utilization in bio-derived fuels such as biogas, bio-oil, bioethanol, and biodiesel are catered to this article. Part II cover the current statistics of textile effluent pollution level in India and its steps in confronting the risks of pollution are discussed. A clear picture of the nano techniques in pre-treatment, and the recent nano related trends pursued in industries to eliminate the dyes and chemicals from the discharges is discussed. The substantial aspect of nano catalysis in achieving emission-free fuel and toxic-free effluents and the augmentation in this field is conferred. This review portrays the dependency on nano materials & technology for sustainable future.

5.
Environ Res ; 258: 119440, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38906448

RESUMEN

Heavy metal pollution in water sources has become a major worldwide environmental issue, posing a threat to aquatic ecosystems and human health. The pollution of the aquatic environment is increasing as a result of industrialization, climate change, and urban development. The sources of heavy metal pollution in water include mining waste, leachates from landfills, municipal and industrial wastewater, urban runoff, and natural events such as volcanism, weathering, and rock abrasion. Heavy metal ions are toxic and potentially carcinogenic. They can also buildup in biological systems and cause bioaccumulation even at low levels of exposure, heavy metals can cause harm to organs such as the nervous system, liver and lungs, kidneys and stomach, skin, and reproductive systems. There were various approaches tried to purify water and maintain water quality. The main purpose of this article was to investigate the occurrence and fate of the dangerous contaminants (Heavy metal and metalloids) found in domestic and industrial effluents. This effluent mixes with other water streams and is used for agricultural activities and other domestic activities further complicating the issue. It also discussed conventional and non-conventional treatment methods for heavy metals from aquatic environments. Conclusively, a pollution assessment of heavy metals and a human health risk assessment of heavy metals in water resources have been explained. In addition, there have been efforts to focus on heavy metal sequestration from industrial waste streams and to create a scientific framework for reducing heavy metal discharges into the aquatic environment.

6.
Environ Res ; 246: 118060, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38157966

RESUMEN

In this study, Sulphated/AlMCM-41 (S/AlMCM-41) catalysts were synthesized and used to produce biodiesel from CFMO. Different percentages of S/AlMCM-41 catalysts were prepared and characterized by X-ray diffraction, BET studies, TPD, and SEM-EDS analysis. Sulphur incorporation to the MCM framework though reduced the surface area, and pore volume of the catalyst, sufficient acidity were produced in the catalyst surface. The existence of functional groups and the composition of the biodiesel obtained was analysed by FTIR and GC-MS. S/AlMCM-41 (80%) catalyst presented a high catalytic activity with maximum biodiesel conversion % when compared to other variants. The bio-ester produced from CFMO with S/AlMCM-41 (80%) catalyst possessed the higher calorific value of 50 MJ/kg and flashpoint of 153 °C and other properties analogous to the standard biodiesel. The engine performance was examined for biodiesel blends with neat diesel, where biodiesel blends performed better than neat diesel. The exhaust gas emission studies also highlighted that the obtained biodiesel showed emission characteristics similar to the standard biodiesel, whereas marginally higher emission for CO and CO2 of about 2.2 and 7.9% was reported.


Asunto(s)
Biocombustibles , Gasolina , Animales , Pollos , Plumas , Monóxido de Carbono/análisis , Emisiones de Vehículos
7.
Environ Res ; 241: 117385, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37838203

RESUMEN

An Endocrine Disrupting Chemical (EDC) is any compound that disrupts the function of the endocrine system in humans and is ubiquitous in the environment either as a result of natural events or through anthropogenic activities. Bisphenol A, phthalates, parabens, pesticides, triclosan, polychlorinated biphenyls, and heavy metals, which are frequently found in the pharmaceutical, cosmetic, and packaging sectors, are some of the major sources of EDC pollutants. EDCs have been identified to have a deteriorating effect on the female reproductive system, as evidenced by the increasing number of reproductive disorders such as endometriosis, uterine fibroids, polycystic ovary syndrome, premature ovarian failure, menstrual irregularity, menarche, and infertility. Studying EDCs in relation to women's health is essential for understanding the complex interactions between environmental factors and health outcomes. It enables the development of strategies to mitigate risks, protect reproductive and overall health, and inform public policy decisions to safeguard women's well-being. Healthcare professionals must know the possible dangers of EDC exposure and ask about environmental exposures while evaluating patients. This may result in more precise diagnosis and personalized treatment regimens. This review summarises the existing understanding of prevalent EDCs that impact women's health and involvement in female reproductive dysfunction and underscores the need for more research. Further insights on potential mechanisms of action of EDCs on female has been emphasized in the article. We also discuss the role of nutritional intervention in reducing the effect of EDCs on women's reproductive health. EDC pollution can be further reduced by adhering to strict regulations prohibiting the release of estrogenic substances into the environment.


Asunto(s)
Disruptores Endocrinos , Contaminantes Ambientales , Humanos , Femenino , Disruptores Endocrinos/toxicidad , Salud Reproductiva , Reproducción , Contaminantes Ambientales/toxicidad , Exposición a Riesgos Ambientales/efectos adversos , Salud de la Mujer
8.
Environ Res ; 250: 118530, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387491

RESUMEN

A novel multimode colorimetric and fluorescent chemosensor was developed using an 8-hydroxy quinoline carbaldehyde Schiff base with a quinoline hydrazide probe (E)-2-((2-(quinolin-2-yl)hydrazineylidene)methyl)quinolin-8-ol (L). NMR (1H & 13C), FTIR, and HR-mass spectral characterization techniques confirmed the probe L structural conformation. As Probe L contacts Pb2+ ions, a color change and turn-off emission can be visually detected in EtOH:H2O (1:1, v/v, pH = 7.21) medium. The probe displays a good emission at 440 nm due to the combined ESIPT and ICT process. The Pb2+ ion interacts with the probe and selectively quenches fluorescence by inhibiting ESIPT and >CN- isomerization. As per Job's plot, L-Pb2+ complex formation occurred in a 1:1 stoichiometric ratio, with association constant (Ka) and quenching constant (Ksv) estimated at 1.52 × 105 M-1 and 4.12 × 105 M, respectively. The detection limits of Pb2+ by spectrophotometric and spectrofluorometric were 1.99 µM (41 ppb) and 23.4 nM (485 ppt), respectively. Additionally, the test paper kit and RGB tool were used to monitor the color changes of L with Pb2+ and the LOD was found to be 5.99 µM (125 ppb). Its recognition mechanism has been verified by 1H NMR, ESI-mass, and theoretical studies.


Asunto(s)
Colorimetría , Colorantes Fluorescentes , Plomo , Quinolinas , Bases de Schiff , Plomo/análisis , Plomo/química , Bases de Schiff/química , Quinolinas/química , Quinolinas/análisis , Colorantes Fluorescentes/química , Colorimetría/métodos , Teléfono Inteligente , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Espectrometría de Fluorescencia/métodos
9.
Environ Res ; 257: 119336, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838751

RESUMEN

Polycystic kidney disease is the most prevalent hereditary kidney disease globally and is mainly linked to the overexpression of a gene called PKD1. To date, there is no effective treatment available for polycystic kidney disease, and the practicing treatments only provide symptomatic relief. Discovery of the compounds targeting the PKD1 gene by inhibiting its expression under the disease condition could be crucial for effective drug development. In this study, a molecular docking and molecular dynamic simulation, QSAR, and MM/GBSA-based approaches were used to determine the putative inhibitors of the Pkd1 enzyme from a library of 1379 compounds. Initially, fourteen compounds were selected based on their binding affinities with the Pkd1 enzyme using MOE and AutoDock tools. The selected drugs were further investigated to explore their properties as drug candidates and the stability of their complex formation with the Pkd1 enzyme. Based on the physicochemical and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties, and toxicity profiling, two compounds including olsalazine and diosmetin were selected for the downstream analysis as they demonstrated the best drug-likeness properties and highest binding affinity with Pkd1 in the docking experiment. Molecular dynamic simulation using Gromacs further confirmed the stability of olsalazine and diosmetin complexes with Pkd1 and establishing interaction through strong bonding with specific residues of protein. High biological activity and binding free energies of two complexes calculated using 3D QSAR and Schrodinger module, respectively further validated our results. Therefore, the molecular docking and dynamics simulation-based in-silico approach used in this study revealed olsalazine and diosmetin as potential drug candidates to combat polycystic kidney disease by targeting Pkd1 enzyme.

10.
Environ Res ; 243: 117887, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38081345

RESUMEN

Emerging pollutants, particularly microplastics, present a significant threat to both the environment and human health. Traditional treatment methods lack targeted strategies for their removal. This study thoroughly investigated the efficacy of electrocoagulation as a method for efficiently extracting microplastics from water. Various critical operational parameters, including electrode combinations, pH levels, electrolyte concentrations, electrode geometries, configurations, current intensities, and reaction times, were systematically examined. The study systematically examined the impact of different combinations of aluminium (Al) and stainless steel (SS) electrodes, including Al-Al, SS-SS, Al-SS, and SS-Al. Among these combinations, it was found that the Al-Al pairing exhibited outstanding efficiency in microplastic removal, while simultaneously minimizing energy consumption. Initial pH emerged as a critical parameter, with a neutral pH of 7 demonstrating the highest removal efficiency. In the pursuit of optimizing parameters like electrolyte concentrations, electrode geometry, and configuration, it's noteworthy that consistently achieving removal efficiencies exceeding 90% has been a significant achievement. However, to ascertain economic efficiency, additional factors such as energy consumption, electrode usage, and post-treatment conductivity must be taken into account. To tackle the complexity posed by various parameters and criteria, using multi-criteria decision-making tools like TOPSIS is essential, as it has a track record of effectiveness in practical applications. The electrolyte concentration of 0.5 g L-1 is identified as optimal by TOPSIS analysis Additionally, the TOPSIS highlighted the superiority of cylindrical hollow wire mesh electrodes and established the monopolar parallel configuration as the most effective electrode connection method. The investigation carefully evaluated the effect of reaction time, determining that a 50-min window provides optimal microplastic removal efficiency. This refined system exhibited remarkable proficiency in eliminating microplastics of varying size ranges (0-75 µm, 75-150 µm, and 150-300 µm), achieving removal efficiencies of 90.67%, 93.6%, and 94.6%, respectively, at input concentration of 0.2 g L-1. The present study offers a comprehensive framework for optimizing electrocoagulation parameters, presenting a practical and highly effective strategy to address the critical issue of microplastic contamination in aquatic environments.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Microplásticos , Plásticos , Poliestirenos , Agua , Purificación del Agua/métodos , Electrocoagulación/métodos , Aluminio , Acero Inoxidable , Electrólitos , Eliminación de Residuos Líquidos/métodos
11.
Environ Res ; 241: 117626, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37956754

RESUMEN

Cost is the crucial impediment in commercializing microalgal biodiesel. Therefore, cultivating microalgae in cost-effective nutrients reduces the upstream process cost remarkably. Thus, in this study, sugar cane bagasse hydrolysate (SBH) as a lucrative carbon supplement for Chlorococcum sp. and subsequent lipid extraction via an optimized solvent system for biodiesel production was investigated. Characterization of SBH revealed the presence of various monosaccharides and other sugar derivatives such as glucose, fructose, xylose, arabinose, etc. The maximum dry cell weight of 1.7 g/L was estimated in cultures grown in 10 mL SBH. Different solvents such as diethyl ether (DEE), chloroform (CHL), ethyl acetate (ETA), hexane (HEX), methanol (MET), ethanol (ETOH), acetone (ACE) and also combination of solvents (2:1 ratio) such as DEE: MET, CHL: MET, HEX: MET, HEX: ETOH was tested for lipid extraction efficacy. Among solvents used, 12.3% and 18.4% of lipids were extracted using CHL and CHL: MET, respectively, from 10 mL SBH amended cultures. However, the biodiesel yield was found to be similar at about 70.16 % in both SBH and no SBH-added cultures. The fatty acid profile of the biodiesel shows palmitic, oleic, linoleic, linolenic, and arachidonic acid as principal fatty acids. Further, the levels of SFAs, MUFAs, and PUFAs in 10 mL SBH-added cells were 24.67, 12.89, and 34.24%, respectively. Eventually, the fuel properties of Chlorococcum sp. biodiesel, satisfying international biodiesel standards, make the biodiesel a viable diesel substitute in the future.


Asunto(s)
Microalgas , Saccharum , Ácidos Grasos , Solventes , Lípidos , Biocombustibles , Carbono , Metanol , Biomasa
12.
Environ Res ; 241: 117415, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37844684

RESUMEN

Periodontitis is a severe form of gum disease caused by bacterial plaque that affects millions of people and has substantial worldwide health and economic implications. However, current clinical antiseptic and antimicrobial drug therapies are insufficient because they frequently have numerous side effects and contribute to widespread bacterial resistance. Recently, nanotechnology has shown promise in the synthesis of novel periodontal therapeutic materials. Nanoparticles are quickly replacing antibiotics in the treatment of bacterial infections, and their potential application in dentistry is immense. The alarming increases in antimicrobial resistance further emphasize the importance of exploring and utilizing nanotechnology in the fight against tooth diseases particularly periodontitis. We developed 16 different combinations of mesoporous silica nanomaterials in this study by ageing, drying, and calcining them with 11 different metals including silver, zinc, copper, gold, palladium, ruthenium, platinum, nickel, cerium, aluminium, and zirconium. The antibacterial properties of metal-doped silica were evaluated using four distinct susceptibility tests. The agar well diffusion antibacterial activity test, which measured the susceptibility of the microbes being tested, as well as the antibacterial efficacy of mesoporous silica with different silica/metal ratios, were among these studies. The growth kinetics experiment was used to investigate the efficacy of various metal-doped silica nanoparticles on microbial growth. To detect growth inhibitory effects, the colony-forming unit assay was used. Finally, MIC and MBC tests were performed to observe the inhibition of microbial biofilm formation. Our findings show that silver- and zinc-doped silica nanoparticles synthesized using the sol-gel method can be effective antimicrobial agents against periodontitis-causing microbes. This study represents the pioneering work reporting the antimicrobial properties of metal-loaded TUD-1 mesoporous silica, which could be useful in the fight against other infectious diseases too.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Nanopartículas , Periodontitis , Humanos , Plata , Dióxido de Silicio , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Antibacterianos/farmacología , Periodontitis/tratamiento farmacológico , Zinc
13.
Environ Res ; 256: 119218, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38782335

RESUMEN

The production of chemicals/products so far relies on fossil-based resources with the creation of several environmental problems at the global level. In this situation, a sustainable and circular economy model is necessitated to mitigate global environmental issues. Production of biowaste from various processing industries also creates environmental issues which would be valorized for the production of industrially important reactive and bioactive compounds. Lignin acts as a vital part in biowaste composition which can be converted into a wide range of phenolic compounds. The phenolic compounds have attracted much attention, owing to their influence on diverse not only organoleptic parameters, such as taste or color, but also active agents for active packaging systems. Crop residues of varied groups, which are an affluent source of lignocellulosic biomass could serve as a renewable resource for the biosynthesis of ferulic acid (FA). FA is obtained by the FA esterase enzyme action, and it can be further converted into various tail end phenolic flavor green compounds like vanillin, vanillic acid and hydroxycinnamic acid. Lignin being renewable in nature, processing and management of biowastes towards sustainability is the need as far as the global industrial point is concerned. This review explores all the approaches for conversion of lignin into value-added phenolic compounds that could be included to packaging applications. These valorized products can exhibit the antioxidant, antimicrobial, cardioprotective, anti-inflammatory and anticancer properties, and due to these features can emerge to incorporate them into production of functional foods and be utilization of them at active food packaging application. These approaches would be an important step for utilization of the recovered bioactive compounds at the nutraceutical and food industrial sectors.


Asunto(s)
Lignina , Fenoles , Lignina/química , Fenoles/química , Fenoles/análisis , Hidrolasas de Éster Carboxílico/metabolismo , Ácidos Cumáricos/química , Residuos Industriales
14.
Environ Res ; 251(Pt 2): 118704, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38493852

RESUMEN

Dye-sensitized solar cells, represent the alternate technology in solar research due to their cost effective, easy fabrication processes, higher efficiencies, and design flexibility. In this research, dual donor group modified zinc porphyrin dyes, have been synthesized for DSSCs. The complexes of zinc porphyrin functioned as acceptor or attaching groups within each mesophenyl ring and carboxylic acid. These complexes exhibited diverse alkyl substituents and sizable electron-donating substituents, contributing to their varied chemical structures and potential applications. The dual Donor-π bridge -Acceptor group sensitizers, Zn[5,15-diphenylcarbazole-10,20-(4-carboxyphenyl) Porphyrin] (KSR-1) and Zn [5,15-thiadiazole-10,20-(4-carboxyphenyl) Porphyrin] (KSR-2) have been synthesized and adopted for DSSCs implementation. The molar absorption coefficients (ε) of KSR-2 and KSR-1 Soret bands were 0.56 x 105 mol/L/cm and 0.47 x 105 mol/L/cm, respectively. The Q bands of the KSR-1 and KSR-2 dyes were 1.10 x 105 mol/L/cm and 1.0 x 105 mol/L/cm, respectively and the molar absorption coefficient of the KSR-1 dye was greater when compared to the KSR-2 dye. The molar absorption coefficient of 0.71 x 105 mol/L/cm was visible in the KSR -1 Q-band. DFT calculations and the electrochemical characteristics of the KSR-1 and KSR-2 dyes have been studied and discussed. The exploration involved in investigating the photophysical properties and photovoltaic performance which were affected by varying the length and number of the donor entities. The wall-plug efficiency of the KSR-1 based solar panel was Voc = 0.68 V, Jsc = 8.94 mA/m2, FF = 56 and Efficiency (µ) = 3.44%. The wall-plug efficiency of the KSR-2 based solar panel was Voc = 0.63 V, Jsc = 5.42 mA/m2, FF = 53 and Efficiency (µ) = 1.83%.


Asunto(s)
Colorantes , Metaloporfirinas , Energía Solar , Colorantes/química , Metaloporfirinas/química , Suministros de Energía Eléctrica , Zinc/química
15.
Environ Res ; 252(Pt 2): 118816, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570126

RESUMEN

The current investigation reports the usage of adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN), the two recognized machine learning techniques in modelling tetracycline (TC) adsorption onto Cynometra ramiflora fruit biomass derived activated carbon (AC). Many characterization methods utilized, confirmed the porous structure of synthesized AC. ANN and ANFIS models utilized pH, dose, initial TC concentration, mixing speed, time duration, and temperature as input parameters, whereas TC removal percentage was designated as the output parameter. The optimized configuration for the ANN model was determined as 6-8-1, while the ANFIS model employed trimf input and linear output membership functions. The obtained results showed a strong correlation, indicated by high R2 values (ANNR2: 0.9939 & ANFISR2: 0.9906) and low RMSE values (ANNRMSE: 0.0393 & ANFISRMSE: 0.0503). Apart from traditional isotherms, the dataset was fitted to statistical physics models wherein, the double-layer with a single energy satisfactorily explained the physisorption mechanism of TC adsorption. The sorption energy was 21.06 kJ/mol, and the number of TC moieties bound per site (n) was found to be 0.42, conclusive of parallel binding of TC molecules to the adsorbent surface. The adsorption capacity at saturation (Qsat) was estimated to be 466.86 mg/g - appreciably more than previously reported values. These findings collectively demonstrate that the AC derived from C. ramiflora fruit holds great potential for efficient removal of TC from a given system, and machine learning approaches can effectively model the adsorption processes.


Asunto(s)
Biomasa , Carbón Orgánico , Aprendizaje Automático , Redes Neurales de la Computación , Tetraciclina , Adsorción , Tetraciclina/química , Tetraciclina/análisis , Carbón Orgánico/química , Frutas/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis
16.
Environ Res ; 252(Pt 1): 118759, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537741

RESUMEN

Among the various methods for the removal of azo dye, electrocoagulation is recognized to be highly efficient. However, the process is associated with high operation and maintenance cost, which demands the need for reducing the electrolysis time without compromising the performance efficiency. This can be achieved by adopting hybrid electrocoagulation process with a low-cost but effective process, such as adsorption. The study investigated the performance of a hybrid electrocoagulation-biocomposite system (H-EC-BC) for removing methyl orange dye. Firstly, the operating parameters of electrocoagulation process were optimized and a removal efficiency of 99% has been attained using Fe-SS electrodes at a pH of 6 for a reaction time of 30 min. The performance of EC process was found to be decreasing with increase in dye concentration. Secondly, biocomposite was synthesized from Psidium guajava leaves and characterized using SEM, FTIR, EDAX, and XRD analyses. The results suggested that it is having a porous nature and cellulose crystal structure and confirmed the presence of chemical elements such as carbon (65.2%), oxygen (29.1%) as primary with Fe, Cl, Na and Ca as secondary elements. The performance of the biocomposite was evaluated for the dye adsorption using spectrophotometric methods. Various operating parameters were optimized using experimental methods and a maximum removal efficiency of 65% was achieved at a pH of 6, dosage of 5 g/L and an adsorption contact time of 120 min. The maximum efficiency (92.78%) was obtained with Fe-SS electrodes and KCl as a sustaining electrolyte under acidic circumstances (pH 6). The biocomposite was observed to be more efficient for higher dye concentration. Langmuir and Freundlich adsorption isotherms were fitted with the experimental results with R2 values as 0.926 and 0.980 respectively. The adsorption kinetics were described using Pseudo-first and Pseudo-second order models, wherein Pseudo-second order model fits the experimental results with R2 value of 0.999. The energy consumption of electrocoagulation (EC) process in the hybrid H-EC-BC system was compared to that of a standard EC process. The results demonstrated that the hybrid system is approximately 7 times more energy efficient than the conventional process, thereby implicating its adaptability for field application.


Asunto(s)
Colorantes , Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Colorantes/química , Contaminantes Químicos del Agua/química , Aguas Residuales/química , Compuestos Azo/química , Electrocoagulación/métodos , Descoloración del Agua/métodos , Purificación del Agua/métodos
17.
J Environ Manage ; 351: 119988, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181686

RESUMEN

Microplastics are found ubiquitous in the natural environment and are an increasing source of worry for global health. Rapid industrialization and inappropriate plastic waste management in our daily lives have resulted in an increase in the amount of microplastics in the ecosystem. Microplastics that are <150 µm in size could be easily ingested by living beings and cause considerable toxicity. Microplastics can aggregate in living organisms and cause acute, chronic, carcinogenic, developmental, and genotoxic damage. As a result, a sustainable approach to reducing, reusing, and recycling plastic waste is required to manage microplastic pollution in the environment. However, there is still a significant lack of effective methods for managing these pollutants. As a result, the purpose of this review is to convey information on microplastic toxicity and management practices that may aid in the reduction of microplastic pollution. This review further insights on how plastic trash could be converted as value-added products, reducing the load of accumulating plastic wastes in the environment, and leading to a beneficial endeavor for humanity.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Microplásticos , Plásticos , Ecosistema , Contaminación Ambiental/prevención & control , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
18.
Environ Res ; 236(Pt 2): 116825, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37544467

RESUMEN

Endocrine Disrupting Chemicals (EDCs) are harmful compounds that enter the environment naturally or through anthropogenic activities and disrupt normal endocrine functions in humans, adversely affecting reproductive health. Among the most significant sources of EDC contaminants are the pharmaceutical, cosmetic, and packaging industries. EDCs have been identified to have a deteriorating effect on male reproductive system, as evidenced by the increasing number of male infertility cases. A large number of case studies have been published in which men exposed to EDCs experienced testicular cancer, undescended testicles, a decrease in serum testosterone levels, and poor semen quality. Furthermore, epidemiological evidence suggested a link between prenatal EDC exposure and cryptorchidism or undescended testicles, hypospadias, and decreased anogenital distance in infants. The majority of these findings, however, are incongruent due to the lack of long-term follow-up studies that would demonstrate EDCs to be associated with male reproductive disorders. This review aims to provide an overview on recent scientific progress on the association of EDCs to male reproductive health with special emphasis on its toxicity and possible mechanism of EDCs that disrupt male reproductive system.


Asunto(s)
Criptorquidismo , Disruptores Endocrinos , Neoplasias Testiculares , Embarazo , Lactante , Femenino , Humanos , Masculino , Disruptores Endocrinos/toxicidad , Análisis de Semen , Salud Reproductiva , Criptorquidismo/inducido químicamente , Criptorquidismo/epidemiología
19.
Environ Res ; 221: 115250, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36646201

RESUMEN

Diabetes mellitus is a growing disease that affects people of different ages due to deficiencies in insulin action and secretion. Diabetes causing long-term hyperglycemia damages, destroys, and fails essential organs, including kidneys, eyes, hearts, nerves, and blood vessels. The involvement of pathogenic factors makes diabetes mellitus a severe disease. The autoimmune process results in insulin deficiency by destroying the beta-cells in the pancreas. This leads to insulin resistance. As a result of defects and abnormalities in fat, carbohydrate, and protein synthesis, insulin does not work as it should on the target tissues. As diabetes mellitus becomes, more severe, long-term and effective treatment becomes necessary. A wide range of nanomaterials can be used to treat diabetes mellitus in patients. In addition to being potential imaging, diagnostic, and treatment agents for diabetes mellitus, carbon nanomaterials (CNMs) are another group of nanoparticles that exhibit potential interest. The CNMs acts as implantable nanosensor to track and detect blood glucose level in patients with diabetes. CNMS are possible drug carriers that can treat diabetes mellitus selectively, precisely, and effectively. Diabetes mellitus can be diagnosed and treated with CNMs due to their structural specificity and high drug-loading efficiency. The present review explores CNMs for their types, synthesis, and anti-diabetic properties. This review aims to provide a detailed view of the new technology that can be used to decipher the mechanism of CNMs in diabetes mellitus.


Asunto(s)
Diabetes Mellitus , Nanopartículas , Nanoestructuras , Humanos , Carbono/química , Diabetes Mellitus/diagnóstico , Insulina , Nanoestructuras/uso terapéutico , Nanoestructuras/química
20.
Environ Res ; 225: 114960, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36493807

RESUMEN

The present work encompasses a simple strategy to synthesize highly porous TiO2 by incorporating PANI polymer into the sol-gel chemistry of Titanium dioxide/Titanium (IV)-iso-propoxide (TiO2/TTIP). A series of TiO2 samples by varying wt.% of PANI, have been synthesized. A probable growth mechanism has been presented for the formation of a porous ginger-like nanostructure of TiO2-PANI (TP). HRTEM images reveal that the particle size range is 6-16 nm for pristine TiO2 and 5-13 nm for TP samples. XPS analysis confirms the presence of the hydrogen bonds in-between surface hydroxyl groups (Ti-OH) of TiO2 and the protonated nitrogen of PANI. UV-visible absorption study reveals a small shift towards longer wavelength for TP8 sample than that of pristine TiO2 (λmax = 314 nm) as well as reduction in Eg value from 3.02 eV to 2.89 eV. FTIR results confirm the successful interaction of PANI and TiO2. BJH and BET analysis confirms an increase of porosity in TP8 sample with an average pore volume of 0.36 cm3 g-1. High photocatalytic activity (98.77%) towards Methylene blue dye degradation is observed for TP8 sample having 8 wt% of PANI and it is explained through the combined effect of structural porosity of TiO2 and synergic effect of PANI. The Kappa value at pH 11 (0.01372 min-1) is found to be 7.84-folds higher than that of the photocatalytic reaction at pH 3 (Kappa = 0.00175 min-1). While pristine TiO2 exhibits the minimum removal efficiency (89.57%) with Kappa of 0.00756 min-1. Kappa value of catalysis reaction for TP8 is found to be almost 2-fold higher than pristine TiO2. Quantum Yield value for TP8 is found to be 3.59 × 10-4 molecules photon-1. This high Quantum Yield value of present photocatalytic system explicates the low energy consumption for the treatment of textile dye pollutant. Additionally, STY value (1.79 × 10-5 molecules photon-1 mg-1) confirms the outstanding mineralization strength of TP8 by a unit mass for high amounts of MB dye per unit time. Thus, the present study offers an excellent photocatalyst i.e., TP8 having 8 wt% of PANI for the degradation of MB dye.


Asunto(s)
Nanopartículas , Porosidad , Nanopartículas/química , Titanio/química , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA