Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458304

RESUMEN

Epoxy varnishes are of high relevance to advanced steel laminates for the transformation of electric energy. Structure-property correlations of epoxy varnishes, coil coatings and electrical steel laminates are poorly described. Hence, the main objective of this paper was to develop, implement and evaluate well-defined waterborne model epoxy varnishes for electrical steel laminates, and to elucidate structure-property correlations. Adhesives with systematically varied equivalent epoxy weight (EEW) based on bisphenol-A-diglycidyl ether (DGEBA) were investigated and used to formulate waterborne varnishes. Crosslinking agent dicyandiamide (DICY) was added in an over-stoichiometric ratio. The waterborne model varnishes were prepared by shear emulsification at elevated temperatures. The model varnishes in the A-stage were applied to electrical steel using a doctoral blade. At a peak metal temperature of 210 °C, the coatings were cured to the partly crosslinked B-stage. Coated steel sheets were stacked, laminated and fully cured to C-stage at 180 °C for 2 h. For laminates with an epoxy adhesive layer in the C-stage, glass transition temperatures (TG) in the range of 81 to 102 °C were obtained by dynamic mechanical analysis in torsional mode. Within the investigated EEW range, a negative linear correlation of EEW and TG was ascertained. Presumably, higher EEW of the varnish is associated with a less densely crosslinked network in the fully cured state. Roll peel testing of laminates at ambient and elevated temperatures up to 140 °C confirmed the effect of EEW. However, no clear correlation of roll peel strength and glass transition temperature was discernible. In contrast, fatigue fracture mechanics investigations revealed that hydroxyl functionality and crosslinking density were affecting the crack growth resistance of laminates in a contrary manner. The energy-based fracture mechanics approach was much more sensitive than monotonic peel testing.

2.
Polymers (Basel) ; 14(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35406314

RESUMEN

Encapsulants based on ethylene-vinyl acetate copolymers (EVA) or polyolefin elastomers (POE) are essential for glass or photovoltaic module laminates. To improve their multi-functional property profile and their durability, the encapsulants are frequently peroxide crosslinked. The crosslinking kinetics are affected by the macromolecular structure and the formulation with stabilizers such as phenolic antioxidants, hindered amine light stabilizers or aromatic ultraviolet (UV) absorbers. The main objective of this study was to implement temperature-rise and isothermal dynamic mechanical analysis (DMA) approaches in torsional mode and to assess and compare the crosslinking kinetics of novel UV-transparent encapsulants based on EVA and POE. The gelation time was evaluated from the crossover of the storage and loss shear modulus. While the investigated EVA and POE encapsulants revealed quite similar activation energy values of 155 kJ/moles, the storage modulus and complex viscosity in the rubbery state were significantly higher for EVA. Moreover, the gelation of the polar EVA grade was about four times faster than for the less polar POE encapsulant. Accordingly, the curing reaction of POE was retarded up to a factor of 1.6 to achieve a progress of crosslinking of 95%. Hence, distinct differences in the crosslinking kinetics of the UV-transparent EVA and POE grades were ascertained, which is highly relevant for the lamination of modules.

3.
Polymers (Basel) ; 14(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35683899

RESUMEN

For delayed crosslinking of waterborne epoxy varnishes, dicyandiamide (DICY) is often used as a latent curing agent. While, for amine-based curing agents such as diaminoethane (DAE), chemical interactions with metal oxides are well described, so far, no studies have been performed for DICY and waterborne epoxy varnishes. Hence, in this work X-ray photoelectron spectroscopy (XPS) was used to investigate reactions of DICY and varnishes with technical surfaces of Al, Zn, and Sn. To directly study the reaction of DICY with metal oxides, immersion tests in a boiling solution of DICY in pure water were performed. A clear indication of the formation of metal-organic complexes was deduced from the change in the N1s peak of DICY. To understand the interfacial interaction and consequently the interphase formation during coating of waterborne epoxy varnishes, advanced cryo ultra-low-angle microtomy (cryo-ULAM) was implemented. Interestingly, a comparable reaction mechanism and the formation of metal complexes were confirmed for varnishes. The coatings exhibited a pronounced enrichment of the DICY hardener at the metal oxide-polymer interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA