Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Med Inform Decis Mak ; 22(Suppl 6): 300, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36401328

RESUMEN

BACKGROUND: The SI-CURA project (Soluzioni Innovative per la gestione del paziente e il follow up terapeutico della Colite UlceRosA) is an Italian initiative aimed at the development of artificial intelligence solutions to discriminate pathologies of different nature, including inflammatory bowel disease (IBD), namely Ulcerative Colitis (UC) and Crohn's disease (CD), based on endoscopic imaging of patients (P) and healthy controls (N). METHODS: In this study we develop a deep learning (DL) prototype to identify disease patterns through three binary classification tasks, namely (1) discriminating positive (pathological) samples from negative (healthy) samples (P vs N); (2) discrimination between Ulcerative Colitis and Crohn's Disease samples (UC vs CD) and, (3) discrimination between Ulcerative Colitis and negative (healthy) samples (UC vs N). RESULTS: The model derived from our approach achieves a high performance of Matthews correlation coefficient (MCC) > 0.9 on the test set for P versus N and UC versus N, and MCC > 0.6 on the test set for UC versus CD. CONCLUSION: Our DL model effectively discriminates between pathological and negative samples, as well as between IBD subgroups, providing further evidence of its potential as a decision support tool for endoscopy-based diagnosis.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Colitis Ulcerosa/diagnóstico por imagen , Colitis Ulcerosa/patología , Enfermedad de Crohn/diagnóstico por imagen , Enfermedad de Crohn/patología , Inteligencia Artificial , Endoscopía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA