Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(12): 5200-5213, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35294171

RESUMEN

Phase-transfer catalysis (PTC) is one of the most powerful catalytic manifolds for asymmetric synthesis. Chiral cationic or anionic PTC strategies have enabled a variety of transformations, yet studies on the use of insoluble inorganic salts as nucleophiles for the synthesis of enantioenriched molecules have remained elusive. A long-standing challenge is the development of methods for asymmetric carbon-fluorine bond formation from readily available and cost-effective alkali metal fluorides. In this Perspective, we describe how H-bond donors can provide a solution through fluoride binding. We use examples, primarily from our own research, to discuss how hydrogen bonding interactions impact fluoride reactivity and the role of H-bond donors as phase-transfer catalysts to bring solid-phase alkali metal fluorides in solution. These studies led to hydrogen bonding phase-transfer catalysis (HB-PTC), a new concept in PTC, originally crafted for alkali metal fluorides but offering opportunities beyond enantioselective fluorination. Looking ahead, the unlimited options that one can consider to diversify the H-bond donor, the inorganic salt, and the electrophile, herald a new era in phase-transfer catalysis. Whether abundant inorganic salts of lattice energy significantly higher than those studied to date could be considered as nucleophiles, e.g., CaF2, remains an open question, with solutions that may be found through synergistic PTC catalysis or beyond PTC.


Asunto(s)
Fluoruros , Metales Alcalinos , Catálisis , Fluoruros/química , Enlace de Hidrógeno , Sales (Química)
2.
J Am Chem Soc ; 144(10): 4572-4584, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35230845

RESUMEN

Asymmetric catalytic azidation has increased in importance to access enantioenriched nitrogen containing molecules, but methods that employ inexpensive sodium azide remain scarce. This encouraged us to undertake a detailed study on the application of hydrogen bonding phase-transfer catalysis (HB-PTC) to enantioselective azidation with sodium azide. So far, this phase-transfer manifold has been applied exclusively to insoluble metal alkali fluorides for carbon-fluorine bond formation. Herein, we disclose the asymmetric ring opening of meso aziridinium electrophiles derived from ß-chloroamines with sodium azide in the presence of a chiral bisurea catalyst. The structure of novel hydrogen bonded azide complexes was analyzed computationally, in the solid state by X-ray diffraction, and in solution phase by 1H and 14N/15N NMR spectroscopy. With N-isopropylated BINAM-derived bisurea, end-on binding of azide in a tripodal fashion to all three NH bonds is energetically favorable, an arrangement reminiscent of the corresponding dynamically more rigid trifurcated hydrogen-bonded fluoride complex. Computational analysis informs that the most stable transition state leading to the major enantiomer displays attack from the hydrogen-bonded end of the azide anion. All three H-bonds are retained in the transition state; however, as seen in asymmetric HB-PTC fluorination, the H-bond between the nucleophile and the monodentate urea lengthens most noticeably along the reaction coordinate. Kinetic studies corroborate with the turnover rate limiting event resulting in a chiral ion pair containing an aziridinium cation and a catalyst-bound azide anion, along with catalyst inhibition incurred by accumulation of NaCl. This study demonstrates that HB-PTC can serve as an activation mode for inorganic salts other than metal alkali fluorides for applications in asymmetric synthesis.


Asunto(s)
Azidas , Fluoruros , Álcalis , Aniones/química , Catálisis , Hidrógeno , Enlace de Hidrógeno , Cinética , Azida Sódica
3.
J Am Chem Soc ; 142(46): 19731-19744, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33166450

RESUMEN

Hydrogen-bonding interactions have been explored in catalysis, enabling complex chemical reactions. Recently, enantioselective nucleophilic fluorination with metal alkali fluoride has been accomplished with BINAM-derived bisurea catalysts, presenting up to four NH hydrogen-bond donors (HBDs) for fluoride. These catalysts bring insoluble CsF and KF into solution, control fluoride nucleophilicity, and provide a chiral microenvironment for enantioselective fluoride delivery to the electrophile. These attributes encouraged a 1H/19F NMR study to gain information on hydrogen-bonding networks with fluoride in solution, as well as how these arrangements impact the efficiency of catalytic nucleophilic fluorination. Herein, NMR experiments enabled the determination of the number and magnitude of HB contacts to fluoride for thirteen bisurea catalysts. These data supplemented by diagnostic coupling constants 1hJNH···F- give insight into how multiple H bonds to fluoride influence reaction performance. In dichloromethane (DCM-d2), nonalkylated BINAM-derived bisurea catalyst engages two of its four NH groups in hydrogen bonding with fluoride, an arrangement that allows effective phase-transfer capability but low control over enantioselectivity for fluoride delivery. The more efficient N-alkylated BINAM-derived bisurea catalysts undergo urea isomerization upon fluoride binding and form dynamically rigid trifurcated hydrogen-bonded fluoride complexes that are structurally similar to their conformation in the solid state. Insight into how the countercation influences fluoride complexation is provided based on NMR data characterizing the species formed in DCM-d2 when reacting a bisurea catalyst with tetra-n-butylammonium fluoride (TBAF) or CsF. Structure-activity analysis reveals that the three hydrogen-bond contacts with fluoride are not equal in terms of their contribution to catalyst efficacy, suggesting that tuning individual electronic environment is a viable approach to control phase-transfer ability and enantioselectivity.

4.
J Am Chem Soc ; 142(33): 14045-14051, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32608977

RESUMEN

Ammonium salts are used as phase-transfer catalysts for fluorination with alkali metal fluorides. We now demonstrate that these organic salts, specifically azetidinium triflates, are suitable substrates for enantioselective ring opening with CsF and a chiral bis-urea catalyst. This process, which highlights the ability of hydrogen bonding phase-transfer catalysts to couple two ionic reactants, affords enantioenriched γ-fluoroamines in high yields. Mechanistic studies underline the role of the catalyst for phase-transfer, and computed transition state structures account for the enantioconvergence observed for mixtures of achiral azetidinium diastereomers. The N-substituents in the electrophile influence the reactivity, but the configuration at nitrogen is unimportant for the enantioselectivity.

5.
J Am Chem Soc ; 141(7): 2878-2883, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30689372

RESUMEN

Potassium fluoride (KF) is an ideal reagent for fluorination because it is safe, easy to handle and low-cost. However, poor solubility in organic solvents coupled with limited strategies to control its reactivity has discouraged its use for asymmetric C-F bond formation. Here, we demonstrate that hydrogen bonding phase-transfer catalysis with KF provides access to valuable ß-fluoroamines in high yields and enantioselectivities. This methodology employs a chiral N-ethyl bis-urea catalyst that brings solid KF into solution as a tricoordinated urea-fluoride complex. This operationally simple reaction affords enantioenriched fluoro-diphenidine (up to 50 g scale) using 0.5 mol % of recoverable bis-urea catalyst.

6.
J Am Chem Soc ; 140(28): 8675-8680, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29889502

RESUMEN

(+)-Stephadiamine is an unusual alkaloid isolated from the vine Stephania japonica. It features a norhasubanan skeleton, and contains two adjacent α-tertiary amines, which renders it an attractive synthetic target. Here, we present the first total synthesis of stephadiamine, which hinges on an efficient cascade reaction to implement the aza[4.3.3]propellane core of the alkaloid. The α-aminolactone moiety in a highly hindered position was installed via Tollens reaction and Curtius rearrangement. Useful building blocks for the asymmetric synthesis of morphine and (nor)hasubanan alkaloids are introduced.


Asunto(s)
Alcaloides/síntesis química , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Stephania/química , Alcaloides/química , Analgésicos Opioides/síntesis química , Analgésicos Opioides/química , Técnicas de Química Sintética , Compuestos Heterocíclicos de 4 o más Anillos/química , Modelos Moleculares , Morfina/síntesis química , Morfina/química , Estereoisomerismo
7.
Angew Chem Int Ed Engl ; 55(20): 6099-102, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27071633

RESUMEN

Quaternary stereocenters are found in numerous bioactive molecules. The Tsuji-Trost reaction has proven to be a powerful C-C bond forming process, and, at least in principle, should be well suited to access quaternary stereocenters via the α-allylation of ketones. However, while indirect approaches are known, the direct, catalytic asymmetric α-allylation of branched ketones has been elusive until today. By combining "enol catalysis" with the use of CO2 as a formal catalyst for asymmetric catalysis, we have now developed a solution to this problem: we report a direct, highly enantioselective and highly atom-economic Tsuji-Trost allylation of branched ketones with allylic alcohol. Our reaction delivers products bearing quaternary stereocenters with high enantioselectivity and water as the sole by-product. We expect our methodology to be of utility in asymmetric catalysis and inspire the design of other highly atom-economic transformations.

8.
Angew Chem Int Ed Engl ; 54(6): 1960-4, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25573140

RESUMEN

Novel Cashmeran odorants were designed by molecular modeling. Their short syntheses involve a novel asymmetric Brønsted acid catalyzed Michael addition of unactivated α-substituted ketones. This key transformation was realized by utilizing a new type of enol activation catalysis and affords different cyclic ketones bearing α-quaternary stereocenters in good to excellent yields and with high enantioselectivity. Subsequent McMurry coupling and Saegusa-Ito oxidation furnished the enantiopure target odorants, one enantiomer of which indeed possesses the typical olfactory aspects of Cashmeran.

9.
Science ; 381(6655): 302-306, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37471551

RESUMEN

All fluorochemicals-including elemental fluorine and nucleophilic, electrophilic, and radical fluorinating reagents-are prepared from hydrogen fluoride (HF). This highly toxic and corrosive gas is produced by the reaction of acid-grade fluorspar (>97% CaF2) with sulfuric acid under harsh conditions. The use of fluorspar to produce fluorochemicals via a process that bypasses HF is highly desirable but remains an unsolved problem because of the prohibitive insolubility of CaF2. Inspired by calcium phosphate biomineralization, we herein disclose a protocol of treating acid-grade fluorspar with dipotassium hydrogen phosphate (K2HPO4) under mechanochemical conditions. The process affords a solid composed of crystalline K3(HPO4)F and K2-xCay(PO3F)a(PO4)b, which is found suitable for forging sulfur-fluorine and carbon-fluorine bonds.

10.
Nat Protoc ; 16(12): 5559-5591, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34759385

RESUMEN

Fluorine is a key element present in ~35% of agrochemicals and 25% of marketed pharmaceutical drugs. The availability of reliable synthetic protocols to prepare catalysts that allow the efficient incorporation of fluorine in organic molecules is therefore essential for broad applicability. Herein, we report a protocol for the multigram synthesis of two representative enantiopure N-alkyl bis-urea organocatalysts derived from (S)-(-)-1,1'-binaphthyl-2,2'-diamine ((S)-BINAM). These tridentate hydrogen bond donors are highly effective phase-transfer catalysts for solubilizing safe and inexpensive metal alkali fluorides (KF and CsF) in organic solvents for enantioselective nucleophilic fluorinations. The first catalyst, characterized by N-isopropyl substitution, was obtained by using a two-step sequence consisting of reductive amination followed by urea coupling from commercially available starting materials (14 g, 48% yield and 5-d total synthesis time). The second catalyst, featuring N-ethyl alkylation and meta-terphenyl substituents, was accessed via a novel, scalable, convergent route that concluded with the coupling between N-ethylated (S)-BINAM and a preformed isocyanate (52 g and 52% overall yield). On this scale, the synthesis requires ~10 d. This can be reduced to 5 d by performing some steps in parallel. Compared to the previous synthetic route, this protocol avoids the final chromatographic purification and produces the desired catalysts in very high purity and improved yield.


Asunto(s)
Técnicas de Química Sintética , Diaminas/química , Fluoruros/química , Flúor/química , Naftalenos/química , Urea/síntesis química , Alquilación , Aminación , Catálisis , Halogenación , Humanos , Enlace de Hidrógeno , Isocianatos/química , Oxidación-Reducción , Estereoisomerismo , Compuestos de Terfenilo/química , Urea/análogos & derivados
11.
Nat Chem ; 12(12): 1174-1179, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32989271

RESUMEN

Carbocations can be categorized into classical carbenium ions and non-classical carbonium ions. These intermediates are ubiquitous in reactions of both fundamental and practical relevance, finding application in the petroleum industry as well as the discovery of new drugs and materials. Conveying stereochemical information to carbocations is therefore of interest to a range of chemical fields. While previous studies targeted systems proceeding through classical ions, enantiocontrol over their non-classical counterparts has remained unprecedented. Here we show that strong and confined chiral acids catalyse enantioselective reactions via the non-classical 2-norbornyl cation. This reactive intermediate is generated from structurally different precursors by leveraging the reactivity of various functional groups to ultimately deliver the same enantioenriched product. Our work demonstrates that tailored catalysts can act as suitable hosts for simple, non-functionalized carbocations via a network of non-covalent interactions. We anticipate that the methods described herein will provide catalytic accessibility to valuable carbocation systems.

12.
Science ; 360(6389): 638-642, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29748281

RESUMEN

Common anionic nucleophiles such as those derived from inorganic salts have not been used for enantioselective catalysis because of their insolubility. Here, we report that merging hydrogen bonding and phase-transfer catalysis provides an effective mode of activation for nucleophiles that are insoluble in organic solvents. This catalytic manifold relies on hydrogen bonding complexation to render nucleophiles soluble and reactive, while simultaneously inducing asymmetry in the ensuing transformation. We demonstrate the concept using a chiral bis-urea catalyst to form a tridentate hydrogen bonding complex with fluoride from its cesium salt, thereby enabling highly efficient enantioselective ring opening of episulfonium ion. This fluorination method is synthetically valuable considering the scarcity of alternative protocols and points the way to wider application of the catalytic approach with diverse anionic nucleophiles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA