Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Exp Eye Res ; 235: 109638, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37657528

RESUMEN

Although mouse models are widely used in retinal drug development, pharmacokinetics in mouse eye is poorly understood. In this study, we applied non-invasive in vivo fluorophotometry to study pharmacokinetics of intravitreal fluorescein sodium (molecular weight 0.38 kDa) and fluorescein isothiocyanate-dextran (FD-150; molecular weight 150 kDa) in mice. Intravitreal half-lives of fluorescein and FD-150 in mouse eyes were 0.53 ± 0.06 h and 2.61 ± 0.86 h, respectively. These values are 8-230 times shorter than the elimination half-lives of similar compounds in the human vitreous. The apparent volumes of distribution in the mouse vitreous were close to the anatomical volume of the mouse vitreous (FD-150, 5.1 µl; fluorescein, 9.6 µl). Dose scaling factors were calculated from mouse to rat, rabbit, monkey and human translation. Based on pharmacokinetic modelling and compound concentrations in the vitreous and anterior chamber, fluorescein is mainly eliminated posteriorly across blood-retina barrier, but FD-150 is cleared via aqueous humour outflow. The results of this study improve the knowledge of intravitreal pharmacokinetics in mouse and facilitate inter-species scaling in ocular drug development.


Asunto(s)
Retina , Cuerpo Vítreo , Ratones , Ratas , Humanos , Animales , Conejos , Barrera Hematorretinal , Fluoresceína , Cámara Anterior , Inyecciones Intravítreas
2.
Exp Eye Res ; 224: 109237, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36096189

RESUMEN

Pathological angiogenesis related to neovascularization in the eye is mediated through vascular endothelial growth factors (VEGFs) and their receptors. Ocular neovascular-related diseases are mainly treated with anti-VEGF agents. In this study we evaluated the efficacy and safety of novel gene therapy using adeno associated virus 2 vector expressing a truncated form of soluble VEGF receptor-2 fused to the Fc-part of human IgG1 (AAV2-sVEGFR-2-Fc) to inhibit ocular neovascularization in laser induced choroidal neovascularization (CNV) in mice. The biological activity of sVEGFR-2-Fc was determined in vitro. It was shown that sVEGFR-2-Fc secreted from ARPE-19 cells was able to bind to VEGF-A165 and reduce VEGF-A165 induced cell growth and survival. A single intravitreal injection (IVT) of AAV2-sVEGFR-2-Fc (1 µl, 4.7 × 1012 vg/ml) one-month prior laser photocoagulation did not cause any changes in the retinal morphology and significantly suppressed fluorescein leakage at 7, 14, 21 and 28 days post-lasering compared to controls. Macrophage infiltration was observed after the injection of both AAV2-sVEGFR-2-Fc and PBS. Our findings indicate that AAV2 mediated gene delivery of the sVEGFR-2-Fc efficiently reduces formation of CNV and could be developed to a therapeutic tool for the treatment of retinal diseases associated with neovascularization.


Asunto(s)
Neovascularización Coroidal , Ratones , Humanos , Animales , Neovascularización Coroidal/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Inyecciones Intravítreas , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Dependovirus/genética , Vectores Genéticos , Ratones Endogámicos C57BL , Terapia Genética , Inhibidores de la Angiogénesis/uso terapéutico , Factores de Crecimiento Endotelial Vascular/genética , Factores de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/uso terapéutico , Inmunoglobulina G/metabolismo , Fluoresceínas/metabolismo
3.
J Control Release ; 370: 1-13, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615893

RESUMEN

Lipid-based drug formulations are promising systems for improving delivery of drugs to ocular tissues, such as retina. To develop lipid-based systems further, an improved understanding of their pharmacokinetics is required, but high-quality in vivo experiments require a large number of animals, raising ethical and economic questions. In order to expedite in vivo kinetic testing of lipid-based systems, we propose a barcode approach that is based on barcoding liposomes with non-endogenous lipids. We developed and evaluated a liquid-chromatography-mass spectrometry method to quantify many liposomes simultaneously in aqueous humor, vitreous, and neural retina at higher than ±20% precision and accuracy. Furthermore, we showed in vivo suitability of the method in pharmacokinetic evaluation of six different liposomes after their simultaneous injection into the rat vitreal cavity. We calculated pharmacokinetic parameters in vitreous and aqueous humor, quantified liposome concentrations in the retina, and quantitated retinal distribution of the liposomes in the rats. Compared to individual injections of the liposome formulations, the barcode-based study design enabled reduction of animal numbers from 72 to 12. We believe that the proposed approach is reliable and will reduce and refine ocular pharmacokinetic experiments with liposomes and other lipid-based systems.


Asunto(s)
Humor Acuoso , Lípidos , Liposomas , Retina , Cuerpo Vítreo , Animales , Cuerpo Vítreo/metabolismo , Humor Acuoso/metabolismo , Lípidos/química , Retina/metabolismo , Masculino , Ratas , Ojo/metabolismo , Espectrometría de Masas , Cromatografía Liquida , Ratas Sprague-Dawley , Distribución Tisular
4.
Eur J Pharm Biopharm ; 198: 114260, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484852

RESUMEN

Even though subconjunctival injections are used in clinics, their quantitative pharmacokinetics has not been studied systematically. For this purpose, we evaluated the ocular and plasma pharmacokinetics of subconjunctival dexamethasone in rabbits. Intravenous injection was also given to enable a better understanding of the systemic pharmacokinetics. Dexamethasone concentrations in plasma (after subconjunctival and intravenous injections) and four ocular tissues (iris-ciliary body, aqueous humour, neural retina and vitreous) were analysed using LC-MS/MS. Population pharmacokinetic modelling for plasma data from both injection routes were used, and for first time the constant rate of absorption of dexamethasone from the subconjunctival space into plasma was estimated (ka,plasma = 0.043 min-1, i.e. absorption half-life of 17.3 min). Non-compartmental analysis was used for the ocular data analysis and resulting in ocular drug exposure of iris-ciliary body (AUC0-∞= 41984 min·ng/g) > neural retina (AUC0-∞= 25511 min·ng/g) > vitreous (AUC0-∞= 7319 min·ng/mL) > aqueous humour (AUC0-∞= 6146 min·ng/mL). The absolute bioavailability values after subconjunctival injection, reported for the first time, were 0.74 % in aqueous humour (comparable to topical dexamethasone suspensions), and 0.30 % in vitreous humour (estimated to be higher than in topical administration). These novel and comprehensive pharmacokinetic data provide valuable information on the potential for exploiting this route in ocular drug development for treating both, anterior and posterior segment ocular diseases. Moreover, the new generated dexamethasone-parameters are a step-forward in building predictive pharmacokinetic models to support the design of new subconjunctival dexamethasone formulations, which may sustain drug effect for longer period of time.


Asunto(s)
Espectrometría de Masas en Tándem , Cuerpo Vítreo , Animales , Conejos , Inyecciones Intravenosas , Cromatografía Liquida , Dexametasona
5.
J Control Release ; 360: 810-817, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37473807

RESUMEN

Choroidal neovascularization (CNV) is a common ocular pathology that may be associated in a variety of eye diseases. Although intravitreal injection treatment of anti-vascular endothelial growth factor (anti-VEGF) drugs shows significant clinical benefits in CNV treatment, the limitations of the current therapy need to be addressed. The aim of our study was to investigate the potential utility of three C-end Rule (CendR) peptides (RPARPAR, PL3, iRGD) for CNV targeting and to evaluate the efficacy of peptides for treating experimental CNV in mice. We observed that the CendR peptides localize to the CNV lesion sites after intravitreal injection and were mainly found in the outer nuclear cell layer (ONL) of the mouse retina. Interestingly, experimental therapy with tenascin-C (TNC-C) and neuropilin-1 (NRP-1)-targeting PL3 peptide, reduced angiogenesis and decreased vascular leakage. The results suggest that PL3 and potentially other CendR peptides could serve as affinity targeting ligands and therapeutics for ocular diseases that involve pathological CNV.


Asunto(s)
Neovascularización Coroidal , Ratones , Animales , Neovascularización Coroidal/tratamiento farmacológico , Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Péptidos/uso terapéutico , Inyecciones Intravítreas , Rayos Láser , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
6.
Int J Pharm ; 620: 121725, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35405282

RESUMEN

Choroidal neovascularization (CNV) is a prevalent vision-threatening vascular disorder in aging population. CNV is associated with several diseases in the posterior segment of the eye such as age-related macular degeneration (AMD). In this study we developed sunitinib-loaded liposomes to block the neovascularization signalling pathway through inhibition of tyrosine kinase of vascular endothelial growth factor receptors (VEGFRs). Liposomal sunitinib formulations were prepared by thin film hydration method and studied for their encapsulation efficiency (EE), loading capacity (LC) and drug release profile in buffer andvitreous. Our finding showed that the liposomes (mean size 104 nm) could effectively entrap sunitinib (EE ≈ 95%) at relatively high loading capacity (LC ≈ 5%) and release sunitinib over at least 3 days. Intravitreal sunitinib-loaded liposomes revealed inhibitory effect on established neovascularization in laser-induced CNV mouse model while the intravitreal injection of sunitinib solubilized with cyclodextrin was inefficient in management of neovascularization. Accordingly, liposomal sunitinib is a promising drug delivery system that should be further studied to inhibit the CNV related to AMD.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular , Animales , Neovascularización Coroidal/tratamiento farmacológico , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Inyecciones Intravítreas , Liposomas/uso terapéutico , Degeneración Macular/tratamiento farmacológico , Ratones , Sunitinib/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Int J Pharm ; 621: 121800, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35533923

RESUMEN

In this study, the intravitreal pharmacokinetics of nanomaterials were investigated in vivo in rats and rabbits. Impact of particle size and shape (spherical, longitudinal) on ocular particle distribution and elimination was investigated with fundus camera, optical coherence tomography and ocular fluorophotometry. Differently sized particles showed prolonged ocular retention and remarkable differences in vitreal elimination, but size dependence was consistent, suggesting that other features have influence on their vitreal kinetics. We also demonstrate that liposomes are eliminated from the rabbit vitreous mainly via the anterior route. Simulation of drug concentrations after injection of intravitreal particles shows the importance of synchronized particle retention and drug release rate for efficient drug delivery. In conclusion, we provide kinetic insights in intravitreally administered nanoparticles to improve retinal drug delivery.


Asunto(s)
Nanoestructuras , Retina , Animales , Sistemas de Liberación de Medicamentos/métodos , Inyecciones Intravítreas , Cinética , Conejos , Ratas , Retina/diagnóstico por imagen
8.
Int J Pharm ; 613: 121361, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34896561

RESUMEN

Quantitation of ocular drug metabolism is important, but only sparse data is currently available. Herein, the pharmacokinetics of four drugs, substrates of metabolizing enzymes, was investigated in albino rabbit eyes after intracameral and intravitreal administrations. Acetaminophen, brimonidine, cefuroxime axetil, and sunitinib and their corresponding metabolites were quantitated in the cornea, iris-ciliary body, aqueous humor, lens, vitreous humor, and neural retina with LC-MS/MS analytics. Non-compartmental analysis was employed to estimate the pharmacokinetic parameters of the parent drugs and metabolites. The area under the curve (AUC) values of metabolites were 12-70 times lower than the AUC values of the parent drugs in the tissues with the highest enzymatic activity. The ester prodrug cefuroxime axetil was an exception because it was efficiently and quantitatively converted to cefuroxime in the ocular tissues. In contrast to the liver, sulfotransferases, aldehyde oxidase, and cytochrome P450 3A activities were low in the eye and they had negligible impact on ocular drug clearance. With the exception of esterase substrates, metabolism seems to be a minor player in ocular pharmacokinetics. However, metabolites might contribute to ocular toxicity, and drug metabolism in various eye tissues should be investigated and understood thoroughly.


Asunto(s)
Preparaciones Farmacéuticas , Animales , Cromatografía Liquida , Conejos , Retina , Espectrometría de Masas en Tándem , Cuerpo Vítreo
9.
Eur J Pharm Sci ; 159: 105720, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33465477

RESUMEN

Rats are widely used to study ocular drug responses, whereas rabbits are the most widely used preclinical model of ocular pharmacokinetics. Despite their wide use in evaluation of intravitreally injected drugs, translational information about pharmacokinetics and dose scaling between rats and rabbits is missing. In this study, we investigated intravitreal pharmacokinetics in rats and rabbits using non-invasive ocular fluorophotometry. Fluorescein and fluorescently labeled molecules (dextrans) with different molecular weights (376 Da, 10, 150 and 500 kDa), were injected into the vitreous of rabbits and rats. Intravitreal concentrations of the compounds were determined and pharmacokinetic parameters were calculated. Overall, the elimination half-lives of the macromolecules in rat vitreous were 5-6 times shorter than in rabbits, and the half-lives were prolonged at increasing molecular weights. The apparent volumes of distribution for tested compounds in rats and rabbits were in the range of the anatomical vitreal volumes. In both species, anterior route of elimination was predominant for the dextrans, whereas fluorescein was mainly eliminated via posterior route. Rabbit-to-rat ratios for intravitreal clearance were in the range of 2 to 5 for dextrans. Therefore, 2-5 times higher doses are needed for similar drug exposure in rabbits than in rats. Also, the shorter half-lives of macromolecules in the rat vitreous must be taken into account in translation to rabbit and human studies. The scaling factors presented herein will augment translational drug development for eye diseases.


Asunto(s)
Ojo , Animales , Fluoresceína , Semivida , Inyecciones Intravítreas , Conejos , Ratas
10.
J Control Release ; 339: 307-320, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34606936

RESUMEN

Mutations in rhodopsin lead to its misfolding resulting in autosomal dominant retinitis pigmentosa (adRP). Pharmacological inhibition of the ATP-driven chaperone valosin-containing protein (VCP), a molecular checkpoint for protein quality control, slows down retinal degeneration in animal models. However, poor water-solubility of VCP inhibitors poses a challenge to their clinical translation as intravitreal injections for retinal treatment. In order to enable the delivery of VCP inhibitors, we have developed and investigated two formulations for the VCP inhibitor ML240. Nanoformulations of ML240 were obtained by using amphiphilic polymers methoxy-poly (ethylene glycol)5kDa-cholane (mPEG5kDa-cholane) and methoxy-poly (ethylene glycol)5kDa-cholesterol (mPEG5kDa-cholesterol). Both formulations increased the water-solubility of ML240 by two orders of magnitude and prolonged the drug released over ten days. In addition, encapsulation of ML240 in mPEG5kDa-cholane showed superior photoreceptor protection at lower drug concentrations, normalized rhodopsin localization, and alleviated inflammatory microglial responses in an ex vivo rat model of retinal degeneration. The study demonstrates the potential of VCP inhibitor nanoformulations to treat adRP, a pharmacologically orphan disease.


Asunto(s)
Nanopartículas , Neuroprotección , Retinitis Pigmentosa/tratamiento farmacológico , Proteína que Contiene Valosina/antagonistas & inhibidores , Animales , Preparaciones de Acción Retardada , Modelos Animales de Enfermedad , Ratas
11.
Pharmaceutics ; 13(10)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34683941

RESUMEN

Barded-Biedl syndrome (BBS) is a rare genetic disorder with an unmet medical need for retinal degeneration. Small-molecule drugs were previously identified to slow down the apoptosis of photoreceptors in BBS mouse models. Clinical translation was not practical due to the necessity of repetitive invasive intravitreal injections for pediatric populations. Non-invasive methods of retinal drug targeting are a prerequisite for acceptable adaptation to the targeted pediatric patient population. Here, we present the development and functional testing of a non-invasive, topical, magnetically assisted delivery system, harnessing the ability of magnetic nanoparticles (MNPs) to cargo two drugs (guanabenz and valproic acid) with anti-unfolded protein response (UPR) properties towards the retina. Using magnetic resonance imaging (MRI), we showed the MNPs' presence in the retina of Bbs wild-type mice, and their photoreceptor localization was validated using transmission electron microscopy (TEM). Subsequent electroretinogram recordings (ERGs) demonstrated that we achieved beneficial biological effects with the magnetically assisted treatment translating the maintained light detection in Bbs-/- mice (KO). To our knowledge, this is the first demonstration of efficient magnetic drug targeting in the photoreceptors in vivo after topical administration. This non-invasive, needle-free technology expands the application of SMDs for the treatment of a vast spectrum of retinal degenerations and other ocular diseases.

12.
Pharmaceutics ; 14(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35056906

RESUMEN

The treatment of retinal diseases by intravitreal injections requires frequent administration unless drug delivery systems with long retention and controlled release are used. In this work, we focused on pullulan (≈67 kDa) conjugates of dexamethasone as therapeutic systems for intravitreal administration. The pullulan-dexamethasone conjugates self-assemble into negatively charged nanoparticles (average size 326 ± 29 nm). Intravitreal injections of pullulan and pullulan-dexamethasone were safe in mouse, rat and rabbit eyes. Fluorescently labeled pullulan particles showed prolonged retention in the vitreous and they were almost completely eliminated via aqueous humor outflow. Pullulan conjugates also distributed to the retina via Müller glial cells when tested in ex vivo retina explants and in vivo. Pharmacokinetic simulations showed that pullulan-dexamethasone conjugates may release free and active dexamethasone in the vitreous humor for over 16 days, even though a large fraction of dexamethasone may be eliminated from the eye as bound pullulan-dexamethasone. We conclude that pullulan based drug conjugates are promising intravitreal drug delivery systems as they may reduce injection frequency and deliver drugs into the retinal cells.

13.
Eur J Pharm Biopharm ; 166: 155-162, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34139290

RESUMEN

Quantitative understanding of pharmacokinetics of topically applied ocular drugs requires more research to further understanding and to eventually allow predictive in silico models to be developed. To this end, a topical cocktail of betaxolol, timolol and atenolol was instilled on albino rabbit eyes. Tear fluid, corneal epithelium, corneal stroma with endothelium, bulbar conjunctiva, anterior sclera, iris-ciliary body, lens and vitreous samples were collected and analysed using LC-MS/MS. Iris-ciliary body was also analysed after intracameral cocktail injection. Non-compartmental analysis was utilized to estimate the pharmacokinetics parameters. The most lipophilic drug, betaxolol, presented the highest exposure in all tissues except for tear fluid after topical administration, followed by timolol and atenolol. For all drugs, iris-ciliary body concentrations were higher than that of the aqueous humor. After topical instillation the most hydrophilic drug, atenolol, had 3.7 times higher AUCiris-ciliary body than AUCaqueous humor, whereas the difference was 1.4 and 1.6 times for timolol and betaxolol, respectively. This suggests that the non-corneal route (conjunctival-scleral) was dominating the absorption of atenolol, while the corneal route was more important for timolol and betaxolol. The presented data increase understanding of ocular pharmacokinetics of a cocktail of drugs and provide data that can be used for quantitative modeling and simulation.


Asunto(s)
Humor Acuoso/química , Atenolol , Betaxolol , Lágrimas/química , Timolol , Administración Oftálmica , Animales , Atenolol/administración & dosificación , Atenolol/farmacocinética , Betaxolol/administración & dosificación , Betaxolol/farmacocinética , Disponibilidad Biológica , Combinación de Medicamentos , Soluciones Oftálmicas/administración & dosificación , Soluciones Oftálmicas/farmacocinética , Evaluación de Resultado en la Atención de Salud , Conejos , Solubilidad , Timolol/administración & dosificación , Timolol/farmacocinética , Distribución Tisular
14.
Eur J Pharm Sci ; 155: 105553, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32946960

RESUMEN

Ocular bioavailability after eye drops administration is an important, but rarely determined, pharmacokinetic parameter. In this study, we measured the pharmacokinetics of a cocktail of three beta blockers after their topical administration into the albino rabbit eye. Samples from aqueous humour were analysed with LC-MS/MS. The pharmacokinetic parameters were estimated using compartmental and non-compartmental analyses. The ocular bioavailability was covering broad range of values: atenolol (0.07 %), timolol (1.22%, 1.51%) and betaxolol (3.82%, 4.31%). Absolute ocular bioavailability presented a positive trend with lipophilicity and the values showed approximately 60-fold range. The generated data enhances our understanding for ocular pharmacokinetics of drugs and may be utilized in pharmacokinetic model building in ophthalmic drug development.


Asunto(s)
Betaxolol , Timolol , Administración Tópica , Antagonistas Adrenérgicos beta , Animales , Atenolol , Disponibilidad Biológica , Cromatografía Liquida , Soluciones Oftálmicas , Conejos , Espectrometría de Masas en Tándem
15.
Sci Rep ; 7(1): 1597, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28487519

RESUMEN

The Finnish variant of late infantile neuronal ceroid lipofuscinosis (CLN5 disease) belongs to a family of neuronal ceroid lipofuscinosis (NCLs) diseases. Vision loss is among the first clinical signs in childhood forms of NCLs. Mutations in CLN5 underlie CLN5 disease. The aim of this study was to characterize how the lack of normal functionality of the CLN5 protein affects the mouse retina. Scotopic electroretinography (ERG) showed a diminished c-wave amplitude in the CLN5 deficient mice already at 1 month of age, indicative of pathological events in the retinal pigmented epithelium. A- and b-waves showed progressive impairment later from 2 and 3 months of age onwards, respectively. Structural and immunohistochemical (IHC) analyses showed preferential damage of photoreceptors, accumulation of autofluorescent storage material, apoptosis of photoreceptors, and strong inflammation in the CLN5 deficient mice retinas. Increased levels of autophagy-associated proteins Beclin-1 and P62, and increased LC3b-II/LC3b-I ratio, were detected by Western blotting from whole retinal extracts. Photopic ERG, visual evoked potentials, IHC and cell counting indicated relatively long surviving cone photoreceptors compared to rods. In conclusion, CLN5 deficient mice develop early vision loss that reflects the condition reported in clinical childhood forms of NCLs. The vision loss in CLN5 deficient mice is primarily caused by photoreceptor degeneration.


Asunto(s)
Autofagia , Lipofuscinosis Ceroideas Neuronales/patología , Degeneración Retiniana/patología , Animales , Apoptosis , Modelos Animales de Enfermedad , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Femenino , Fluorescencia , Inflamación/patología , Proteínas de Membrana de los Lisosomas , Masculino , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/metabolismo , Ratones , Microglía/patología , Lipofuscinosis Ceroideas Neuronales/complicaciones , Lipofuscinosis Ceroideas Neuronales/metabolismo , Degeneración Retiniana/complicaciones , Degeneración Retiniana/metabolismo , Degeneración Retiniana/fisiopatología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Factores de Tiempo , Agudeza Visual
16.
PLoS One ; 9(12): e113317, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25469887

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder that primarily affects the medium-size GABAergic neurons of striatum. The R6/2 mouse line is one of the most widely used animal models of HD. Previously the hallmarks of HD-related pathology have been detected in photoreceptors and interneurons of R6/2 mouse retina. Here we aimed to explore the survival of retinal ganglion cells (RGCs) and functional integrity of distinct retinal cell populations in R6/2 mice. The pattern electroretinography (PERG) signal was lost at the age of 8 weeks in R6/2 mice in contrast to the situation in wild-type (WT) littermates. This defect may be attributable to a major reduction in photopic ERG responses in R6/2 mice which was more evident in b- than a-wave amplitudes. At the age of 4 weeks R6/2 mice had predominantly the soluble form of mutant huntingtin protein (mHtt) in the RGC layer cells, whereas the aggregated form of mHtt was found in the majority of those cells from the 12-week-old R6/2 mice and onwards. Retinal astrocytes did not contain mHtt deposits. The total numbers of RGC layer cells, retinal astrocytes as well as optic nerve axons did not differ between 18-week-old R6/2 mice and their WT controls. Our data indicate that mHtt deposition does not cause RGC degeneration or retinal astrocyte loss in R6/2 mice even at a late stage of HD-related pathology. However, due to functional deficits in the rod- and cone-pathways, the R6/2 mice suffer progressive deficits in visual capabilities starting as early as 4 weeks; at 8 weeks there is severe impairment. This should be taken into account in any behavioral testing conducted in R6/2 mice.


Asunto(s)
Enfermedad de Huntington/fisiopatología , Retina/fisiopatología , Células Ganglionares de la Retina/metabolismo , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Electrorretinografía , Femenino , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Retina/citología , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Células Ganglionares de la Retina/patología
17.
Int J Pharm ; 467(1-2): 34-41, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24680962

RESUMEN

Nanocrystal-based drug delivery systems provide important tools for ocular formulation development, especially when considering poorly soluble drugs. The objective of the study was to formulate ophthalmic, intraocular pressure (IOP) reducing, nanocrystal suspensions from a poorly soluble drug, brinzolamide (BRA), using a rapid wet milling technique, and to investigate their IOP reducing effect in vivo. Different stabilizers for the nanocrystals were screened (hydroxypropyl methylcellulose (HPMC), poloxamer F127 and F68, polysorbate 80) and HPMC was found to be the only successful stabilizer. In order to investigate both the effect of an added absorption enhancer (polysorbate 80) and the impact of the free drug in the nanocrystal suspension, formulations in phosphate buffered saline (PBS) at pH 7.4 and pH 4.5 were prepared. Particle size, polydispersity (PI), solid state (DSC), morphology (SEM) as well as dissolution behavior and the uniformity of the formulations were characterized. There was rapid dissolution of BRA (in PBS pH 7.4) from all the nanocrystal formulations; after 1 min 100% of the drug was fully dissolved. The effect was significantly pronounced at pH 4.5, where the dissolved fraction of drug was the highest. The cytotoxicity of nanocrystal formulations to human corneal epithelial cell (HCE-T) viability was tested. The effects of the nanocrystal formulations and the commercial product on the cell viability were comparable. The intraocular pressure (IOP) lowering effect was investigated in vivo using a modern rat ocular hypertensive model and elevated IOP reduction was seen in vivo with all the formulations. Notably, the reduction achieved in experimentally elevated IOP was comparable to that obtained with a marketed product. In conclusion, various BRA nanocrystal formulations, which all showed advantageous dissolution and absorption behavior, were successfully formulated.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/administración & dosificación , Glaucoma/tratamiento farmacológico , Presión Intraocular/efectos de los fármacos , Nanopartículas , Sulfonamidas/administración & dosificación , Tiazinas/administración & dosificación , Administración Oftálmica , Animales , Rastreo Diferencial de Calorimetría , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Química Farmacéutica , Modelos Animales de Enfermedad , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/patología , Excipientes/química , Glaucoma/enzimología , Glaucoma/fisiopatología , Humanos , Derivados de la Hipromelosa/química , Masculino , Microscopía Electrónica de Rastreo , Nanotecnología , Tamaño de la Partícula , Polisorbatos/química , Ratas Wistar , Solubilidad , Sulfonamidas/química , Sulfonamidas/toxicidad , Propiedades de Superficie , Tecnología Farmacéutica/métodos , Tiazinas/química , Tiazinas/toxicidad , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA