Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 18(5)2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-28509881

RESUMEN

Fragile-X syndrome is the most common form of inherited mental retardation accompanied by other phenotypes, including macroorchidism. The disorder originates with mutations in the Fmr1 gene coding for the FMRP protein, which, with its paralogs FXR1 and FXR2, constitute a well-conserved family of RNA-binding proteins. Drosophila melanogaster is a good model for the syndrome because it has a unique fragile X-related gene: dFmr1. Recently, in addition to its confirmed role in the miRNA pathway, a function for dFmr1 in the piRNA pathway, operating in Drosophila gonads, has been established. In this review we report a summary of the piRNA pathways occurring in gonads with a special emphasis on the relationship between the piRNA genes and the crystal-Stellate system; we also analyze the roles of dFmr1 in the Drosophila gonads, exploring their genetic and biochemical interactions to reveal some unexpected connections.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Regulación de la Expresión Génica , ARN Pequeño no Traducido/genética , Animales , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/genética , Epistasis Genética , Evolución Molecular , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Gónadas/metabolismo , Humanos , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño
2.
Genes (Basel) ; 14(5)2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239420

RESUMEN

Fragile X syndrome is a neuro-developmental disease affecting intellectual abilities and social interactions. Drosophila melanogaster represents a consolidated model to study neuronal pathways underlying this syndrome, especially because the model recapitulates complex behavioural phenotypes. Drosophila Fragile X protein, or FMRP, is required for a normal neuronal structure and for correct synaptic differentiation in both the peripheral and central nervous systems, as well as for synaptic connectivity during development of the neuronal circuits. At the molecular level, FMRP has a crucial role in RNA homeostasis, including a role in transposon RNA regulation in the gonads of D. m. Transposons are repetitive sequences regulated at both the transcriptional and post-transcriptional levels to avoid genomic instability. De-regulation of transposons in the brain in response to chromatin relaxation has previously been related to neurodegenerative events in Drosophila models. Here, we demonstrate for the first time that FMRP is required for transposon silencing in larval and adult brains of Drosophila "loss of function" dFmr1 mutants. This study highlights that flies kept in isolation, defined as asocial conditions, experience activation of transposable elements. In all, these results suggest a role for transposons in the pathogenesis of certain neurological alterations in Fragile X as well as in abnormal social behaviors.


Asunto(s)
Proteínas de Drosophila , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Animales , Encéfalo/metabolismo , Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , ARN/metabolismo
3.
Front Genet ; 10: 10, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30815010

RESUMEN

Fragile-X syndrome is one of the most common forms of inherited mental retardation and autistic behaviors. The reduction/absence of the functional FMRP protein, coded by the X-linked Fmr1 gene in humans, is responsible for the syndrome. Patients exhibit a variety of symptoms predominantly linked to the function of FMRP protein in the nervous system like autistic behavior and mild-to-severe intellectual disability. Fragile-X (FraX) individuals also display cellular and morphological traits including branched dendritic spines, large ears, and macroorchidism. The dFmr1 gene is the Drosophila ortholog of the human Fmr1 gene. dFmr1 mutant flies exhibit synaptic abnormalities, behavioral defects as well as an altered germline development, resembling the phenotypes observed in FraX patients. Therefore, Drosophila melanogaster is considered a good model to study the physiopathological mechanisms underlying the Fragile-X syndrome. In this review, we explore how the multifaceted roles of the FMRP protein have been addressed in the Drosophila model and how the gained knowledge may open novel perspectives for understanding the molecular defects causing the disease and for identifying novel therapeutical targets.

4.
Front Physiol ; 10: 133, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30842743

RESUMEN

Circadian clocks control and synchronize biological rhythms of several behavioral and physiological phenomena in most, if not all, organisms. Rhythm generation relies on molecular auto-regulatory oscillations of interlocked transcriptional-translational feedback loops. Rhythmic clock-gene expression is at the base of rhythmic protein accumulation, though post-transcriptional and post-translational mechanisms have evolved to adjust and consolidate the proper pace of the clock. In Drosophila, BELLE, a conserved DEAD-box RNA helicase playing important roles in reproductive capacity, is involved in the small RNA-mediated regulation associated to the piRNA pathway. Here, we report that BELLE is implicated in the circadian rhythmicity and in the regulation of endogenous transposable elements (TEs) in both nervous system and gonads. We suggest that BELLE acts as important element in the piRNA-mediated regulation of the TEs and raise the hypothesis that this specific regulation could represent another level of post-transcriptional control adopted by the clock to ensure the proper rhythmicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA