Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(8): e1010755, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36006890

RESUMEN

Annual influenza vaccination is recommended to update the variable hemagglutinin antigens. Here, we first designed a virus-like particle (VLP) displaying consensus multi-neuraminidase (NA) subtypes (cN1, cN2, B cNA) and M2 ectodomain (M2e) tandem repeat (m-cNA-M2e VLP). Vaccination of mice with m-cNA-M2e VLP induced broad NA inhibition (NAI), and M2e antibodies as well as interferon-gamma secreting T cell responses. Mice vaccinated with m-cNA-M2e VLP were protected against influenza A (H1N1, H5N1, H3N2, H9N2, H7N9) and influenza B (Yamagata and Victoria lineage) viruses containing substantial antigenic variations. Protective immune contributors include cellular and humoral immunity as well as antibody-dependent cellular cytotoxicity. Furthermore, comparable cross protection by m-cNA-M2e VLP vaccination was induced in aged mice. This study supports a novel strategy of developing a universal vaccine against influenza A and B viruses potentially in both young and aged populations by inducing multi-NA subtype and M2e immunity with a single VLP entity.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Anticuerpos Antivirales , Humanos , Virus de la Influenza A/clasificación , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/prevención & control , Proteínas de la Matriz Viral/genética
2.
Intervirology ; 59(2): 74-110, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27829245

RESUMEN

RNA phages are often used as prototypes for modern recombinant virus-like particle (VLP) technologies. Icosahedral RNA phage VLPs can be formed from coat proteins (CPs) and are efficiently produced in bacteria and yeast. Both genetic fusion and chemical coupling have been successfully used for the production of numerous chimeras based on RNA phage VLPs. In this review, we describe advances in RNA phage VLP technology along with the history of the Leviviridae family, including its taxonomical organization, genomic structure, and important role in the development of molecular biology. Comparative 3D structures of different RNA phage VLPs are used to explain the level of VLP tolerance to foreign elements displayed on VLP surfaces. We also summarize data that demonstrate the ability of CPs to tolerate different organic (peptides, oligonucleotides, and carbohydrates) and inorganic (metal ions) compounds either chemically coupled or noncovalently added to the outer and/or inner surfaces of VLPs. Finally, we present lists of nanotechnological RNA phage VLP applications, such as experimental vaccines constructed by genetic fusion and chemical coupling methodologies, nanocontainers for targeted drug delivery, and bioimaging tools.


Asunto(s)
Cápside , Fagos ARN , Vacunas de Partículas Similares a Virus/química , Secuencia de Aminoácidos , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Leviviridae/clasificación , Leviviridae/genética , Conformación Molecular , Nanotecnología/métodos , Vacunas de Partículas Similares a Virus/inmunología
3.
J Infect Dis ; 209(12): 1882-90, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24585894

RESUMEN

BACKGROUND: Chikungunya virus (CHIKV) causes outbreaks of chikungunya fever worldwide and represents an emerging pandemic threat. Vaccine development against CHIKV has proved challenging. Currently there is no approved vaccine or specific therapy for the disease. METHODS: To develop novel experimental CHIKV vaccine, we used novel immunization DNA (iDNA) infectious clone technology, which combines the advantages of DNA and live attenuated vaccines. Here we describe an iDNA vaccine composed of plasmid DNA that encode the full-length infectious genome of live attenuated CHIKV clone 181/25 downstream from a eukaryotic promoter. The iDNA approach was designed to initiate replication of live vaccine virus from the plasmid in vitro and in vivo. RESULTS: Experimental CHIKV iDNA vaccines were prepared and evaluated in cultured cells and in mice. Transfection with 10 ng of iDNA was sufficient to initiate replication of vaccine virus in vitro. Vaccination of BALB/c mice with a single 10 µg of CHIKV iDNA plasmid resulted in seroconversion, elicitation of neutralizing antibodies, and protection from experimental challenge with a neurovirulent CHIKV. CONCLUSIONS: Live attenuated CHIKV 181/25 vaccine can be delivered in vitro and in vivo by using DNA vaccination. The iDNA approach appears to represent a promising vaccination strategy for CHIK and other alphaviral diseases.


Asunto(s)
Infecciones por Alphavirus/prevención & control , Virus Chikungunya/fisiología , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Replicación Viral , Infecciones por Alphavirus/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Fiebre Chikungunya , Clonación Molecular , ADN Viral/genética , Femenino , Ratones , Ratones Endogámicos BALB C , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas de ADN/genética , Vacunas Virales/genética
4.
Viruses ; 16(3)2024 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-38543793

RESUMEN

Single-dose, immunogenic DNA (iDNA) vaccines coding for whole live-attenuated viruses are reviewed. This platform, sometimes called immunization DNA, has been used for vaccine development for flavi- and alphaviruses. An iDNA vaccine uses plasmid DNA to launch live-attenuated virus vaccines in vitro or in vivo. When iDNA is injected into mammalian cells in vitro or in vivo, the RNA genome of an attenuated virus is transcribed, which starts replication of a defined, live-attenuated vaccine virus in cell culture or the cells of a vaccine recipient. In the latter case, an immune response to the live virus vaccine is elicited, which protects against the pathogenic virus. Unlike other nucleic acid vaccines, such as mRNA and standard DNA vaccines, iDNA vaccines elicit protection with a single dose, thus providing major improvement to epidemic preparedness. Still, iDNA vaccines retain the advantages of other nucleic acid vaccines. In summary, the iDNA platform combines the advantages of reverse genetics and DNA immunization with the high immunogenicity of live-attenuated vaccines, resulting in enhanced safety and immunogenicity. This vaccine platform has expanded the field of genetic DNA and RNA vaccines with a novel type of immunogenic DNA vaccines that encode entire live-attenuated viruses.


Asunto(s)
Flavivirus , Vacunas de ADN , Vacunas Virales , Animales , Anticuerpos Antivirales , Flavivirus/genética , Vacunas Atenuadas , ADN , Mamíferos
5.
PLoS Negl Trop Dis ; 18(4): e0012120, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38648230

RESUMEN

Chikungunya fever virus (CHIKV) is a mosquito-borne alphavirus that causes wide-spread human infections and epidemics in Asia, Africa and recently, in the Americas. CHIKV is considered a priority pathogen by CEPI and WHO. Despite recent approval of a live-attenuated CHIKV vaccine, development of additional vaccines is warranted due to the worldwide outbreaks of CHIKV. Previously, we developed immunization DNA (iDNA) plasmid capable of launching live-attenuated CHIKV vaccine in vivo. Here we report the use of CHIKV iDNA plasmid to prepare a novel, live-attenuated CHIKV vaccine V5040 with rearranged RNA genome. In V5040, genomic RNA was rearranged to encode capsid gene downstream from the glycoprotein genes. Attenuated mutations derived from experimental CHIKV 181/25 vaccine were also engineered into E2 gene of V5040. The DNA copy of rearranged CHIKV genomic RNA with attenuated mutations was cloned into iDNA plasmid pMG5040 downstream from the CMV promoter. After transfection in vitro, pMG5040 launched replication of V5040 virus with rearranged genome and attenuating E2 mutations. Furthermore, V5040 virus was evaluated in experimental murine models for general safety and immunogenicity. Vaccination with V5040 virus subcutaneously resulted in elicitation of CHIKV-specific, virus-neutralizing antibodies. The results warrant further evaluation of V5040 virus with rearranged genome as a novel live-attenuated vaccine for CHIKV.


Asunto(s)
Anticuerpos Antivirales , Fiebre Chikungunya , Virus Chikungunya , Genoma Viral , Vacunas Atenuadas , Vacunas Virales , Replicación Viral , Animales , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/administración & dosificación , Ratones , Virus Chikungunya/genética , Virus Chikungunya/inmunología , Vacunas Virales/inmunología , Vacunas Virales/genética , Vacunas Virales/administración & dosificación , Fiebre Chikungunya/prevención & control , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/virología , Anticuerpos Antivirales/sangre , Femenino , Humanos , Chlorocebus aethiops , Anticuerpos Neutralizantes/sangre , Células Vero , Ratones Endogámicos BALB C
6.
Intervirology ; 56(3): 141-65, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23594863

RESUMEN

Virus-like particle (VLP) technology is a promising approach for the construction of novel vaccines, diagnostic tools, and gene therapy vectors. Initially, VLPs were primarily derived from non-enveloped icosahedral or helical viruses and proved to be viable vaccine candidates due to their effective presentation of epitopes in a native conformation. VLP technology has also been used to prepare chimeric VLPs decorated with genetically fused or chemically coupled epitope stretches selected from immunologically defined target proteins. However, structural constraints associated with the rigid geometrical architecture of icosahedral or helical VLPs pose challenges for the expression and presentation of large epitopes. Complex VLPs derived from non-symmetric enveloped viruses are increasingly being used to incorporate large epitopes and even full-length foreign proteins. Pleomorphic VLPs derived from influenza or other enveloped viruses can accommodate multiple full-length and/or chimeric proteins that can be rationally designed for multifunctional purposes, including multivalent vaccines. Therefore, a second generation of VLP carriers is represented by complex particles reconstructed from natural or chimeric structural proteins derived from complex enveloped viruses. Further development of safe and efficient VLP nanotechnology may require a rational combination of both approaches.


Asunto(s)
Biotecnología/métodos , Portadores de Fármacos , Ingeniería Genética/métodos , Tecnología Farmacéutica/métodos , Virosomas/genética , Animales , Epítopos/genética , Epítopos/inmunología , Humanos , Virus/genética
7.
bioRxiv ; 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37745520

RESUMEN

Chikungunya fever virus (CHIKV) is a mosquito-borne alphavirus that causes wide-spread human infections and epidemics in Asia, Africa and recently, in the Americas. There is no approved vaccine and CHIKV is considered a priority pathogen by CEPI and WHO. Previously, we developed immunization DNA (iDNA) plasmid capable of launching live-attenuated CHIKV vaccine in vivo . Here we report the use of CHIKV iDNA plasmid to prepare a novel, live-attenuated CHIKV vaccine V5040 with rearranged RNA genome for improved safety. In V5040, genomic RNA was rearranged to encode capsid gene downstream from the glycoprotein genes. To secure safety profile, attenuated mutations derived from experimental CHIKV 181/25 vaccine were also engineered into E2 gene of V5040. The DNA copy of rearranged CHIKV genomic RNA with attenuated mutations was cloned into iDNA plasmid pMG5040 downstream from the CMV promoter. After transfection in vitro, pMG5040 launched replication of V5040 virus with rearranged genome and attenuating E2 mutations. Furthermore, V5040 virus was evaluated in experimental murine models for safety and immunogenicity. Vaccination with V5040 virus subcutaneously resulted in elicitation of CHIKV-specific, virus-neutralizing antibodies. The results warrant further evaluation of V5040 virus with rearranged genome as a novel live-attenuated vaccine for CHIKV.

8.
Front Trop Dis ; 32022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37854093

RESUMEN

Effective and simple delivery of DNA vaccines remains a key to successful clinical applications. Previously, we developed a novel class of DNA vaccines, sometimes called iDNA, which encodes the whole live-attenuated vaccine viruses. Compared to a standard DNA vaccine, an iDNA vaccine required a low dose to launch a live-attenuated vaccine in vitro or in vivo. The goal of this pilot study was to investigate if iDNA vaccine encoding live-attenuated Venezuelan equine encephalitis virus (VEEV) can be efficiently delivered in vivo by a microneedle device using a single-dose vaccination with naked iDNA plasmid. For this purpose, we used pMG4020 plasmid encoding live-attenuated V4020 vaccine of VEE virus. The V4020 virus contains structural gene rearrangement, as well as attenuating mutations genetically engineered to prevent reversion mutations. The pMG4020 was administered to experimental rabbits by using a hollow microstructured transdermal system (hMTS) microneedle device. No adverse events to vaccination were noted. Animals that received pMG4020 plasmid have successfully seroconverted, with high plaque reduction neutralization test (PRNT) antibody titers, similar to those observed in animals that received V4020 virus in place of the pMG4020 iDNA plasmid. We conclude that naked iDNA vaccine can be successfully delivered in vivo by using a single-dose vaccination with a microneedle device.

9.
Vaccines (Basel) ; 9(7)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34358131

RESUMEN

Highly pathogenic Avian Influenza (HPAI) viruses continue to cause severe economic losses in poultry species worldwide. HPAI virus of subtype H5N1 was reported in Egypt in 2006, and despite vaccination efforts, the virus has become endemic. The current study aims to evaluate the efficacy of a virus-like particle (VLP) based vaccine in vivo using specific pathogen-free (SPF) chickens. The vaccine was prepared from the HPAI H5N1 virus of clade 2.2.1.2 using the baculovirus expression system. The VLPs were quantitated and characterized, including electron microscopy. In addition, the protection level of the VLPs was evaluated by using two different regimens, including one dose and two-dose vaccinated groups, which gave up to 70% and 100% protection level, respectively. The results of this study emphasize the potential usefulness of the VLPs-based vaccine as an alternative vaccine candidate for the control of AIV infection in poultry.

10.
J Virol ; 83(11): 5726-34, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19321609

RESUMEN

Influenza vaccines capable of inducing cross-reactive or heterotypic immunity could be an important first line of prevention against a novel subtype virus. Influenza virus-like particles (VLPs) displaying functional viral proteins are effective vaccines against replication-competent homologous virus, but their ability to induce heterotypic immunity has not been adequately tested. To measure VLP vaccine efficacy against a known influenza pandemic virus, recombinant VLPs were generated from structural proteins of the 1918 H1N1 virus. Mucosal and traditional parenteral administrations of H1N1 VLPs were compared for the ability to protect against the reconstructed 1918 virus and a highly pathogenic avian H5N1 virus isolated from a fatal human case. Mice that received two intranasal immunizations of H1N1 VLPs were largely protected against a lethal challenge with both the 1918 virus and the H5N1 virus. In contrast, mice that received two intramuscular immunizations of 1918 VLPs were only protected against a homologous virus challenge. Mucosal vaccination of mice with 1918 VLPs induced higher levels of cross-reactive immunoglobulin G (IgG) and IgA antibodies than did parenteral vaccination. Similarly, ferrets mucosally vaccinated with 1918 VLPs completely survived a lethal challenge with the H5N1 virus, while only a 50% survival rate was observed in parenterally vaccinated animals. These results suggest a strategy of VLP vaccination against a pandemic virus and one that stimulates heterotypic immunity against an influenza virus strain with threatening pandemic potential.


Asunto(s)
Hurones/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Virión/inmunología , Administración Intranasal , Animales , Línea Celular , Femenino , Humanos , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Subtipo H1N1 del Virus de la Influenza A/ultraestructura , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/farmacología , Masculino , Ratones , Microscopía Electrónica de Transmisión , Mucosa Nasal/inmunología , Infecciones por Orthomyxoviridae/inmunología
11.
Viruses ; 12(5)2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397182

RESUMEN

In the midst of the ongoing COVID-19 coronavirus pandemic, influenza virus remains a major threat to public health due to its potential to cause epidemics and pandemics with significant human mortality. Cases of H7N9 human infections emerged in eastern China in 2013 and immediately raised pandemic concerns as historically, pandemics were caused by the introduction of new subtypes into immunologically naïve human populations. Highly pathogenic H7N9 cases with severe disease were reported recently, indicating the continuing public health threat and the need for a prophylactic vaccine. Here we review the development of recombinant influenza virus-like particles (VLPs) as vaccines against H7N9 virus. Several approaches to vaccine development are reviewed including the expression of VLPs in mammalian, plant and insect cell expression systems. Although considerable progress has been achieved, including demonstration of safety and immunogenicity of H7N9 VLPs in the human clinical trials, the remaining challenges need to be addressed. These challenges include improvements to the manufacturing processes, as well as enhancements to immunogenicity in order to elicit protective immunity to multiple variants and subtypes of influenza virus.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Vacunas de Partículas Similares a Virus/genética , Animales , Antígenos Virales/inmunología , Ensayos Clínicos como Asunto , Epítopos , Antígenos de Histocompatibilidad Clase II , Humanos
12.
Vaccine ; 38(14): 2949-2959, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32111526

RESUMEN

Junin (JUNV) and Machupo (MACV), two mammalian arenaviruses placed on the 2018 WHO watch list, are prevalent in South America causing Argentine and Bolivian hemorrhagic fevers (AHF and BHF), respectively. The live attenuated JUNV vaccine, Candid #1, significantly reduced the incidence of AHF. Vaccination induces neutralizing antibody (nAb) responses which effectively target GP1 (the viral attachment glycoprotein) pocket which accepts the tyrosine residue of the cellular receptor, human transferrin receptor 1 (TfR1). In spite of close genetic relationships between JUNV and MACV, variability in the GP1 receptor binding site (e.g., MACV GP1 loop 10) results in poor MACV neutralization by Candid #1-induced nAbs. Candid #1 is not recommended for vaccination of children younger than 15 years old (a growing "at risk" group), pregnant women, or other immunocompromised individuals. Candid #1's primary reliance on limited missense mutations for attenuation, genetic heterogeneity, and potential stability concerns complicate approval of this vaccine in the US. To address these issues, we applied alphavirus RNA replicon vector technology based on the human Venezuelan equine encephalitis vaccine (VEEV) TC-83 to generate replication restricted virus-like-particles vectors (VLPVs) simultaneously expressing cellular glycoprotein precursors (GPC) of both viruses, JUNV and MACV. Resulting JV&MV VLPVs were found safe and immunogenic in guinea pigs. Immunization with VLPVs induced humoral responses which correlated with complete protection against lethal disease after challenge with pathogenic strains of JUNV (Romero) and MACV (Carvallo).


Asunto(s)
Alphavirus , Fiebre Hemorrágica Americana , Replicón , Vacunas Virales/inmunología , Alphavirus/genética , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Arenavirus del Nuevo Mundo , Cobayas , Fiebre Hemorrágica Americana/prevención & control , Inmunidad Humoral , Virus Junin , ARN , Vacunas Combinadas/genética , Vacunas Combinadas/inmunología , Vacunas Virales/genética
13.
Vaccines (Basel) ; 8(1)2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32121666

RESUMEN

The safety and genetic stability of V4020, a novel Venezuelan Equine Encephalitis Virus (VEEV) vaccine based on the investigational VEEV TC-83 strain, was evaluated in mice. V4020 was generated from infectious DNA, contains a stabilizing mutation in the E2-120 glycoprotein, and includes rearrangement of structural genes. After intracranial inoculation (IC), replication of V4020 was more attenuated than TC-83, as documented by low clinical scores, inflammation, viral load in brain, and earlier viral clearance. During the first 9 days post-inoculation (DPI), genes involved in inflammation, cytokine signaling, adaptive immune responses, and apoptosis were upregulated in both groups. However, the magnitude of upregulation was greater in TC-83 than V4020 mice, and this pattern persisted till 13 DPI, while V4020 gene expression profiles declined to mock-infected levels. In addition, genetic markers of macrophages, DCs, and microglia were strongly upregulated in TC-83 mice. During five serial passages in the brain, less severe clinical manifestations and a lower viral load were observed in V4020 mice and all animals survived. In contrast, 13.3% of mice met euthanasia criteria during the passages in TC-83 group. At 2 DPI, RNA-Seq analysis of brain tissues revealed that V4020 mice had lower rates of mutations throughout five passages. A higher synonymous mutation ratio was observed in the nsP4 (RdRP) gene of TC-83 compared to V4020 mice. At 2 DPI, both viruses induced different expression profiles of host genes involved in neuro-regeneration. Taken together, these results provide evidence for the improved safety and genetic stability of the experimental V4020 VEEV vaccine in a murine model.

14.
Vaccine ; 38(17): 3378-3386, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32085953

RESUMEN

Live-attenuated V4020 vaccine for Venezuelan equine encephalitis virus (VEEV) containing attenuating rearrangement of the virus structural genes was evaluated in a non-human primate model for immunogenicity and protective efficacy against aerosol challenge with wild-type VEEV. The genomic RNA of V4020 vaccine virus was encoded in the pMG4020 plasmid under control of the CMV promoter and contained the capsid gene downstream from the glycoprotein genes. It also included attenuating mutations from the VEE TC83 vaccine, with E2-120Arg substitution genetically engineered to prevent reversion mutations. The population of V4020 vaccine virus derived from pMG4020-transfected Vero cells was characterized by next generation sequencing (NGS) and indicated no detectable genetic reversions. Cynomolgus macaques were vaccinated with V4020 vaccine virus. After one or two vaccinations including by intramuscular route, high levels of virus-neutralizing antibodies were confirmed with no viremia or apparent adverse reactions to vaccinations. The protective effect of vaccination was evaluated using an aerosol challenge with VEEV. After challenge, macaques had no detectable viremia, demonstrating a protective effect of vaccination with live V4020 VEEV vaccine.


Asunto(s)
Encefalomielitis Equina Venezolana , Vacunas Virales/inmunología , Aerosoles , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Chlorocebus aethiops , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/prevención & control , Macaca , Células Vero , Vacunas Virales/genética , Viremia/prevención & control
15.
Vaccine ; 37(25): 3317-3325, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31072736

RESUMEN

Novel live-attenuated V4020 vaccine was prepared for Venezuelan equine encephalitis virus (VEEV), an alphavirus from the Togaviridae family. The genome of V4020 virus was rearranged, with the capsid gene expressed using a duplicate subgenomic promoter downstream from the glycoprotein genes. V4020 also included both attenuating mutations from the TC83 VEEV vaccine secured by mutagenesis to prevent reversion mutations. The full-length infectious RNA of V4020 vaccine virus was expressed from pMG4020 plasmid downstream from the CMV promoter and launched replication of live-attenuated V4020 in vitro or in vivo. BALB/c mice vaccinated with a single dose of V4020 virus or with pMG4020 plasmid had no adverse reactions to vaccinations and developed high titers of neutralizing antibodies. After challenge with the wild type VEEV, vaccinated mice survived with no morbidity, while all unvaccinated controls succumbed to lethal infection. Intracranial injections in mice showed attenuated replication of V4020 vaccine virus as compared to the TC83. We conclude that V4020 vaccine has safety advantage over TC83, while provides equivalent protection in a mouse VEEV challenge model.


Asunto(s)
Anticuerpos Antivirales/sangre , Virus de la Encefalitis Equina Venezolana/genética , Encefalomielitis Equina Venezolana/prevención & control , Genoma Viral , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , ADN Viral/genética , Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/inmunología , Caballos , Ratones , Ratones Endogámicos BALB C , Mutación , Plásmidos/genética , Vacunas Atenuadas/inmunología , Vacunas Virales/genética , Replicación Viral
16.
Avian Dis ; 63(sp1): 203-208, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31131578

RESUMEN

From October 2016 to July 2017, 47 countries have been affected by highly pathogenic avian influenza (HPAI) viruses of the H5N8 clade 2.3.4.4 subtype, including European and African, and it has been the most severe HPAI outbreak ever in Europe. The development of effective influenza vaccines is required to combine preventive and control measures in order to avoid similar avian influenza epidemics taking place. Here we describe a novel prototype recombinant virus-like particle (VLP) vaccine based on a clade 2.3.4.4 H5 HA derived from a French duck HPAI H5N8 isolate of the 2016-2017 epidemics. Prototype vaccines with different antigen content were formulated and the immunogenicity was examined in specific-pathogen-free chickens and in ducks. Serum samples were collected at 3 and 4 weeks postvaccination, and development of the immune response was evaluated by hemagglutination inhibition test and ELISA. The VLP vaccines induced a dose-dependent and high level of antibody response in both chickens and ducks. The results of HPAI H5N8 challenge experiments in ducks are reported separately.


Construcción rápida y pruebas de inmunogenicidad de un nuevo prototipo de vacuna H5 con base en partículas similares a virus contra el clado 2.3.4.4 del virus de la influenza aviar altamente patógeno H5N8. Desde octubre del 2016 hasta julio del 2017, 47 países se han visto afectados por los virus de la influenza aviar altamente patógena del subtipo H5N8 clado 2.3.4.4, incluidos los europeos y africanos y ha sido el brote de influenza aviar de alta patogenicidad más grave en Europa. Se requiere del desarrollo de vacunas efectivas contra la influenza para combinar medidas preventivas y de control para evitar que ocurran epidemias similares de influenza aviar. En este estudio se describe un nuevo prototipo de vacuna recombinante con partículas similares a virus (VLP) basada en una hemaglutinina H5 clado 2.3.4.4 derivada de un aislamiento del virus de influenza aviar de alta patogenicidad H5N8 de patos en Francia presente en las epidemias entre los años 2016 al 2017. Se formularon prototipos de vacunas con diferente contenido de antígeno y se examinó la inmunogenicidad en pollos libres de patógenos específicos y en patos. Las muestras de suero se recolectaron a las tres y cuatro semanas después de la vacunación y el desarrollo de la respuesta inmune se evaluó mediante la prueba de inhibición de la hemaglutinación y ELISA. Las vacunas con partículas similares a virus indujeron un alto nivel de respuesta de anticuerpos dependiente de la dosis tanto en pollos como en patos. Los resultados de los experimentos de desafío con un virus de influenza aviar de alta patogenicidad H5N8 en patos se informan por separado.


Asunto(s)
Pollos , Patos , Subtipo H5N8 del Virus de la Influenza A/efectos de los fármacos , Gripe Aviar/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Vacunas de Partículas Similares a Virus/farmacología , Vacunas Virales/farmacología , Animales , Inmunogenicidad Vacunal , Gripe Aviar/transmisión , Enfermedades de las Aves de Corral/transmisión , Organismos Libres de Patógenos Específicos
17.
Vaccine ; 36(5): 683-690, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29287681

RESUMEN

Lassa virus (LASV) is the most prevalent rodent-borne arenavirus circulated in West Africa. With population at risk from Senegal to Nigeria, LASV causes Lassa fever and is responsible for thousands of deaths annually. High genetic diversity of LASV is one of the challenges for vaccine R&D. We developed multivalent virus-like particle vectors (VLPVs) derived from the human Venezuelan equine encephalitis TC-83 IND vaccine (VEEV) as the next generation of alphavirus-based bicistronic RNA replicon particles. The genes encoding VEEV structural proteins were replaced with LASV glycoproteins (GPC) from distantly related clades I and IV with individual 26S promoters. Bicistronic RNA replicons encoding wild-type LASV GPC (GPCwt) and C-terminally deleted, non-cleavable modified glycoprotein (ΔGPfib), were encapsidated into VLPV particles using VEEV capsid and glycoproteins provided in trans. In transduced cells, VLPVs induced simultaneous expression of LASV GPCwt and ΔGPfib from 26S alphavirus promoters. LASV ΔGPfib was predominantly expressed as trimers, accumulated in the endoplasmic reticulum, induced ER stress and apoptosis promoting antigen cross-priming. VLPV vaccines were immunogenic and protective in mice and upregulated CD11c+/CD8+ dendritic cells playing the major role in cross-presentation. Notably, VLPV vaccination resulted in induction of cross-reactive multifunctional T cell responses after stimulation of immune splenocytes with peptide cocktails derived from LASV from clades I-IV. Multivalent RNA replicon-based LASV vaccines can be applicable for first responders, international travelers visiting endemic areas, military and lab personnel.


Asunto(s)
Alphavirus/genética , Reacciones Cruzadas/inmunología , Expresión Génica , Vectores Genéticos/genética , Glicoproteínas/genética , Glicoproteínas/inmunología , Virus Lassa/genética , Virus Lassa/inmunología , Animales , Anticuerpos Antivirales/inmunología , Apoptosis , Células CHO , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Línea Celular , Chlorocebus aethiops , Cricetulus , Células Dendríticas , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Inmunización , Inmunogenicidad Vacunal , Fiebre de Lassa/inmunología , Fiebre de Lassa/prevención & control , Ratones , Replicón , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vacunas de Partículas Similares a Virus/inmunología , Células Vero , Vacunas Virales/inmunología
18.
Vaccine ; 36(29): 4346-4353, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29885769

RESUMEN

During the past decade, H5N1 highly pathogenic avian influenza (HPAI) viruses have diversified genetically and antigenically, suggesting the need for multiple H5N1 vaccines. However, preparation of multiple vaccines from live H5N1 HPAI viruses is difficult and economically not feasible representing a challenge for pandemic preparedness. Here we evaluated a novel multi-clade recombinant H5N1 virus-like particle (VLP) design, in which H5 hemagglutinins (HA) and N1 neuraminidase (NA) derived from four distinct clades of H5N1 virus were co-localized within the VLP structure. The multi-clade H5N1 VLPs were prepared by using a recombinant baculovirus expression system and evaluated for functional hemagglutination and neuraminidase enzyme activities, particle size and morphology, as well as for the presence of baculovirus in the purified VLP preparations. To remove residual baculovirus, VLP preparations were treated with beta-propiolactone (BPL). Immunogenicity and efficacy of multi-clade H5N1 VLPs were determined in an experimental ferret H5N1 HPAI challenge model, to ascertain the effect of BPL on immunogenicity and protective efficacy against lethal challenge. Although treatment with BPL reduced immunogenicity of VLPs, all vaccinated ferrets were protected from lethal challenge with influenza A/VietNam/1203/2004 (H5N1) HPAI virus, indicating that multi-clade VLP preparations treated with BPL represent a potential approach for pandemic preparedness vaccines.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Propiolactona/metabolismo , Vacunas de Partículas Similares a Virus/inmunología , Animales , Desinfectantes/metabolismo , Hurones , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Masculino , Infecciones por Orthomyxoviridae/prevención & control , Análisis de Supervivencia , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética
19.
Virology ; 512: 66-73, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28938099

RESUMEN

We describe novel plasmid DNA that encodes the full-length Japanese encephalitis virus (JEV) genomic cDNA and launches live-attenuated JEV vaccine in vitro and in vivo. The synthetic cDNA based on the sequence of JEV SA14-14-2 live-attenuated virus was placed under transcriptional control of the cytomegalovirus major immediate-early promoter. The stability and yields of the plasmid in E. coli were optimized by inserting three synthetic introns that disrupted JEV cDNA in the structural and nonstructural genes. Transfection of Vero cells with the resulting plasmid resulted in the replication of JEV vaccine virus with intron sequences removed from viral RNA. Furthermore, a single-dose vaccination of BALB/c mice with 0.5 - 5µg of plasmid resulted in successful seroconversion and elicitation of JEV virus-neutralizing serum antibodies. The results demonstrate the possibility of using DNA vaccination to launch live-attenuated JEV vaccine and support further development of DNA-launched live-attenuated vaccine for prevention of JEV infections.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , ADN Complementario/inmunología , Virus de la Encefalitis Japonesa (Especie)/genética , Plásmidos/genética , Animales , ADN Complementario/genética , Encefalitis Japonesa/prevención & control , Ratones , Ratones Endogámicos BALB C , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Replicación Viral
20.
Virology ; 501: 176-182, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27936463

RESUMEN

Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes. All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N2 del Virus de la Influenza A/inmunología , Subtipo H7N3 del Virus de la Influenza A/inmunología , Subtipo H9N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Aviar/prevención & control , Neuraminidasa/inmunología , Animales , Anticuerpos Antivirales/inmunología , Pollos , Glicoproteínas Hemaglutininas del Virus de la Influenza/administración & dosificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Inmunidad , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H7N3 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Gripe Aviar/inmunología , Gripe Aviar/virología , Neuraminidasa/administración & dosificación , Neuraminidasa/genética , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA