Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cell ; 135(5): 960-73, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19041756

RESUMEN

To explore how gene products, required for the initiation of synaptic growth, move from the cell body of the sensory neuron to its presynaptic terminals, and from the cell body of the motor neuron to its postsynaptic dendritic spines, we have investigated the anterograde transport machinery in both the sensory and motor neurons of the gill-withdrawal reflex of Aplysia. We found that the induction of long-term facilitation (LTF) by repeated applications of serotonin, a modulatory transmitter released during learning in Aplysia, requires upregulation of kinesin heavy chain (KHC) in both pre- and postsynaptic neurons. Indeed, upregulation of KHC in the presynaptic neurons alone is sufficient for the induction of LTF. However, KHC is not required for the persistence of LTF. Thus, in addition to transcriptional activation in the nucleus and local protein synthesis at the synapse, our studies have identified a third component critical for long-term learning-related plasticity: the coordinated upregulation of kinesin-mediated transport.


Asunto(s)
Aplysia/fisiología , Cinesinas/fisiología , Neuronas/fisiología , Animales , Branquias/fisiología , Plasticidad Neuronal , Sinapsis/fisiología , Regulación hacia Arriba
2.
Mol Cell Neurosci ; 123: 103786, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36252719

RESUMEN

Axonal transport is a major cellular process that mediates bidirectional signaling between the soma and synapse, enabling both intracellular and intercellular communications. Cellular materials, such as proteins, RNAs, and organelles, are transported by molecular motor proteins along cytoskeletal highways in a highly regulated manner. Several studies have demonstrated that axonal transport is central to normal neuronal function, plasticity, and memory storage. Importantly, disruptions in axonal transport result in neuronal dysfunction and are associated with several neurodegenerative disorders. However, we do not know much about axonal transport deficits in neuropsychiatric disorders. Here, we briefly discuss our current understanding of the role of axonal transport in schizophrenia, bipolar and autism.


Asunto(s)
Transporte Axonal , Sinapsis , Transporte Axonal/fisiología , Sinapsis/metabolismo , Neuronas/metabolismo , Transducción de Señal , Axones/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(43): E10197-E10205, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30297415

RESUMEN

Despite the growing evidence suggesting that long noncoding RNAs (lncRNAs) are critical regulators of several biological processes, their functions in the nervous system remain elusive. We have identified an lncRNA, GM12371, in hippocampal neurons that is enriched in the nucleus and necessary for synaptic communication, synapse density, synapse morphology, and dendritic tree complexity. Mechanistically, GM12371 regulates the expression of several genes involved in neuronal development and differentiation, as well as expression of specific lncRNAs and their cognate mRNA targets. Furthermore, we find that cAMP-PKA signaling up-regulates the expression of GM12371 and that its expression is essential for the activity-dependent changes in synaptic transmission in hippocampal neurons. Taken together, our data establish a key role for GM12371 in regulating synapse function.


Asunto(s)
Regulación de la Expresión Génica/genética , ARN Largo no Codificante/genética , Sinapsis/genética , Transcripción Genética/genética , Animales , Diferenciación Celular/genética , Femenino , Hipocampo/fisiología , Ratones , Neuronas/fisiología , Embarazo , Transducción de Señal/genética , Regulación hacia Arriba/genética
4.
Neurobiol Learn Mem ; 163: 107034, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31176693

RESUMEN

While protein-coding genes have been widely studied in learning and memory, the role of the non-coding genome has only recently been investigated. With advances in high throughput sequencing technologies and functional profiling methods, multiple long noncoding RNAs (lncRNAs) have been functionally and mechanistically linked with neurobiological processes related with learning and memory, as well disorders that lead to memory impairment. However, these macromolecules are still a subject of controversy and intense scrutiny regarding the proper criteria for determining their functionality and their evolution in the central nervous system. Recent studies have implicated multiple lncRNAs as critical regulators of gene expression in the central nervous system and mediate learning processes. In this review, we explore possible explanations for how lncRNAs are evolved in our central nervous system, discuss our current understanding of their involvement in learning and memory related disorders, and describe emerging tools for studying lncRNAs.


Asunto(s)
Discapacidades para el Aprendizaje/metabolismo , Aprendizaje , Trastornos de la Memoria/metabolismo , Memoria , ARN Largo no Codificante/fisiología , Animales , Trastornos del Conocimiento/metabolismo , Humanos , ARN Largo no Codificante/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(45): 16154-9, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25352669

RESUMEN

Little is known regarding the identity of the population of proteins that are transported and localized to synapses. Here we describe a new approach that involves the isolation and systematic proteomic characterization of molecular motor kinesins to identify the populations of proteins transported to synapses. We used this approach to identify and compare proteins transported to synapses by kinesin (Kif) complexes Kif5C and Kif3A in the mouse hippocampus and prefrontal cortex. Approximately 40-50% of the protein cargos identified in our proteomics analysis of kinesin complexes are known synaptic proteins. We also found that the identity of kinesins and where they are expressed determine what proteins they transport. Our results reveal a previously unappreciated role of kinesins in regulating the composition of synaptic proteome.


Asunto(s)
Hipocampo/metabolismo , Cinesinas/metabolismo , Corteza Prefrontal/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Sinapsis/metabolismo , Animales , Ratones
7.
Proc Natl Acad Sci U S A ; 110(18): 7464-9, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23589870

RESUMEN

Here we describe a strategy designed to identify RNAs that are actively transported to synapses during learning. Our approach is based on the characterization of RNA transport complexes carried by molecular motor kinesin. Using this strategy in Aplysia, we have identified 5,657 unique sequences consisting of both coding and noncoding RNAs from the CNS. Several of these RNAs have key roles in the maintenance of synaptic function and growth. One of these RNAs, myosin heavy chain, is critical in presynaptic sensory neurons for the establishment of long-term facilitation, but not for its persistence.


Asunto(s)
Aplysia/genética , Perfilación de la Expresión Génica/métodos , Sinapsis/genética , Transcriptoma/genética , Animales , Sistema Nervioso Central/metabolismo , Genoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación in Situ , Cinesinas/metabolismo , Potenciación a Largo Plazo/genética , Cadenas Pesadas de Miosina/metabolismo , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Transporte de Proteínas/genética , ARN/genética , ARN/metabolismo , Transporte de ARN/genética , Análisis de Secuencia de ARN
8.
Sci Rep ; 14(1): 9622, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671060

RESUMEN

The vacuolar sorting receptors (VSRs) are specific to plants and are responsible for sorting and transporting particular proteins from the trans-Golgi network to the vacuole. This process is critically important for various cellular functions, including storing nutrients during seed development. Despite many years of intense studies on VSRs, a complete relation between function and structure has not yet been revealed. Here, we present the crystal structure of the entire luminal region of glycosylated VSR1 from Arabidopsis thaliana (AtVSR1) for the first time. The structure provides insights into the tertiary and quaternary structures of VSR1, which are composed of an N-terminal protease-associated (PA) domain, a unique central region, and one epidermal growth factor (EGF)-like domain followed by two disordered EGF-like domains. The structure of VSR1 exhibits unique characteristics, the significance of which is yet to be fully understood.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Vacuolas/metabolismo , Dominios Proteicos , Modelos Moleculares , Cristalografía por Rayos X , Transporte de Proteínas
9.
bioRxiv ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38979384

RESUMEN

The bidirectional long-distance transport of organelles is crucial for cell body-synapse communication. However, the mechanisms by which this transport is modulated for synapse formation, maintenance, and plasticity are not fully understood. Here, we demonstrate through quantitative analyses that maintaining sensory neuron-motor neuron synapses in the Aplysia gill-siphon withdrawal reflex is linked to a sustained reduction in the retrograde transport of lysosomal vesicles in sensory neurons. Interestingly, while mitochondrial transport in the anterograde direction increases within 12 hours of synapse formation, the reduction in lysosomal vesicle retrograde transport appears three days after synapse formation. Moreover, we find that formation of new synapses during learning induced by neuromodulatory neurotransmitter serotonin further reduces lysosomal vesicle transport within 24 hours, whereas mitochondrial transport increases in the anterograde direction within one hour of exposure. Pharmacological inhibition of several signaling pathways pinpoints PKA as a key regulator of retrograde transport of lysosomal vesicles during synapse maintenance. These results demonstrate that synapse formation leads to organelle-specific and direction specific enduring changes in long-distance transport, offering insights into the mechanisms underlying synapse maintenance and plasticity.

10.
Nat Commun ; 15(1): 2694, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538603

RESUMEN

Long noncoding RNAs (lncRNAs) play crucial roles in maintaining cell homeostasis and function. However, it remains largely unknown whether and how neuronal activity impacts the transcriptional regulation of lncRNAs, or if this leads to synapse-related changes and contributes to the formation of long-term memories. Here, we report the identification of a lncRNA, SLAMR, which becomes enriched in CA1-hippocampal neurons upon contextual fear conditioning but not in CA3 neurons. SLAMR is transported along dendrites via the molecular motor KIF5C and is recruited to the synapse upon stimulation. Loss of function of SLAMR reduces dendritic complexity and impairs activity-dependent changes in spine structural plasticity and translation. Gain of function of SLAMR, in contrast, enhances dendritic complexity, spine density, and translation. Analyses of the SLAMR interactome reveal its association with CaMKIIα protein through a 220-nucleotide element also involved in SLAMR transport. A CaMKII reporter reveals a basal reduction in CaMKII activity with SLAMR loss-of-function. Furthermore, the selective loss of SLAMR function in CA1 disrupts the consolidation of fear memory in male mice, without affecting their acquisition, recall, or extinction, or spatial memory. Together, these results provide new molecular and functional insight into activity-dependent changes at the synapse and consolidation of contextual fear.


Asunto(s)
ARN Largo no Codificante , Ratones , Masculino , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Neuronas/metabolismo , Hipocampo/fisiología , Recuerdo Mental/fisiología , Plasticidad Neuronal/genética , Ratones Endogámicos C57BL
11.
Aging Cell ; : e14228, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924663

RESUMEN

The molecular mechanisms underlying age-related declines in learning and long-term memory are still not fully understood. To address this gap, our study focused on investigating the transcriptional landscape of a singularly identified motor neuron L7 in Aplysia, which is pivotal in a specific type of nonassociative learning known as sensitization of the siphon-withdraw reflex. Employing total RNAseq analysis on a single isolated L7 motor neuron after short-term or long-term sensitization (LTS) training of Aplysia at 8, 10, and 12 months (representing mature, late mature, and senescent stages), we uncovered aberrant changes in transcriptional plasticity during the aging process. Our findings specifically highlight changes in the expression of messenger RNAs (mRNAs) that encode transcription factors, translation regulators, RNA methylation participants, and contributors to cytoskeletal rearrangements during learning and long noncoding RNAs (lncRNAs). Furthermore, our comparative gene expression analysis identified distinct transcriptional alterations in two other neurons, namely the motor neuron L11 and the giant cholinergic neuron R2, whose roles in LTS are not yet fully elucidated. Taken together, our analyses underscore cell type-specific impairments in the expression of key components related to learning and memory within the transcriptome as organisms age, shedding light on the complex molecular mechanisms driving cognitive decline during aging.

12.
BMC Genomics ; 14: 880, 2013 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-24330282

RESUMEN

BACKGROUND: Despite the advances in our understanding of aging-associated behavioral decline, relatively little is known about how aging affects neural circuits that regulate specific behaviors, particularly the expression of genes in specific neural circuits during aging. We have addressed this by exploring a peptidergic neuron R15, an identified neuron of the marine snail Aplysia californica. R15 is implicated in reproduction and osmoregulation and responds to neurotransmitters such as acetylcholine, serotonin and glutamate and is characterized by its action potential bursts. RESULTS: We examined changes in gene expression in R15 neurons during aging by microarray analyses of RNAs from two different age groups, mature and old animals. Specifically we find that 1083 ESTs are differentially regulated in mature and old R15 neurons. Bioinformatics analyses of these genes have identified specific biological pathways that are up or downregulated in mature and old neurons. Comparison with human signaling networks using pathway analyses have identified three major networks [(1) cell signaling, cell morphology, and skeletal muscular system development (2) cell death and survival, cellular function maintenance and embryonic development and (3) neurological diseases, developmental and hereditary disorders] altered in old R15 neurons. Furthermore, qPCR analysis of single R15 neurons to quantify expression levels of candidate regulators involved in transcription (CREB1) and translation (S6K) showed that aging is associated with a decrease in expression of these regulators, and similar analysis in three other neurons (L7, L11 and R2) showed that gene expression change during aging could be bidirectional. CONCLUSIONS: We find that aging is associated with bidirectional changes in gene expression. Detailed bioinformatics analyses and human homolog searches have identified specific biological processes and human-relevant signaling pathways in R15 that are affected during aging. Evaluation of gene expression changes in different neurons suggests specific transcriptomic signature of single neurons during aging.


Asunto(s)
Envejecimiento , Aplysia/genética , Expresión Génica , Neuronas/metabolismo , Animales , Aplysia/fisiología , Etiquetas de Secuencia Expresada , Redes Reguladoras de Genes , Genes Reguladores , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Transcriptoma
13.
RNA Biol ; 10(12): 1765-70, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24356491

RESUMEN

Several studies have shown that synthesis of new proteins at the synapse is a prerequisite for the storage of long-term memories. Relatively little is known about the availability of distinct mRNA populations for translation at specific synapses, the process that determines mRNA localization, and the temporal designations of localized mRNA translation during memory storage. Techniques such as synaptosome preparation and microdissection of distal neuronal processes of cultured neurons and dendritic layers in brain slices are general approaches used to identify localized RNAs. Exploration of the association of RNA-binding proteins to the axonal transport machinery has led to the development of a strategy to identify RNAs that are transported from the cell body to synapses by molecular motor kinesin. In this article, RNA localization at the synapse, as well as its mechanisms and significance in understanding long-term memory storage, are discussed.


Asunto(s)
Cinesinas/metabolismo , Memoria a Largo Plazo , Transporte de ARN , Sinapsis/metabolismo , Animales , Dendritas/metabolismo , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcriptoma
14.
eNeuro ; 10(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549915

RESUMEN

Long-term memory formation requires anterograde transport of proteins from the soma of a neuron to its distal synaptic terminals. This allows new synaptic connections to be grown and existing ones remodeled. However, we do not yet know which proteins are transported to synapses in response to activity and temporal regulation. Here, using quantitative mass spectrometry, we have profiled anterograde protein cargos of a learning-regulated molecular motor protein kinesin [Aplysia kinesin heavy chain 1 (ApKHC1)] following short-term sensitization (STS) and long-term sensitization (LTS) in Aplysia californica Our results reveal enrichment of specific proteins associated with ApKHC1 following both STS and LTS, as well as temporal changes within 1 and 3 h of LTS training. A significant number of proteins enriched in the ApKHC1 complex participate in synaptic function, and, while some are ubiquitously enriched across training conditions, a few are enriched in response to specific training. For instance, factors aiding new synapse formation, such as synaptotagmin-1, dynamin-1, and calmodulin, are differentially enriched in anterograde complexes 1 h after LTS but are depleted 3 h after LTS. Proteins including gelsolin-like protein 2 and sec23A/sec24A, which function in actin filament stabilization and vesicle transport, respectively, are enriched in cargos 3 h after LTS. These results establish that the composition of anterograde transport complexes undergo experience-dependent specific changes and illuminate dynamic changes in the communication between soma and synapse during learning.


Asunto(s)
Aplysia , Cinesinas , Animales , Cinesinas/metabolismo , Aprendizaje/fisiología , Neuronas , Sinapsis/fisiología
15.
Res Sq ; 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36993323

RESUMEN

LncRNAs are involved in critical processes for cell homeostasis and function. However, it remains largely unknown whether and how the transcriptional regulation of long noncoding RNAs results in activity-dependent changes at the synapse and facilitate formation of long-term memories. Here, we report the identification of a novel lncRNA, SLAMR, that becomes enriched in CA1- but not in CA3-hippocampal neurons upon contextual fear conditioning. SLAMR is transported to dendrites via the molecular motor KIF5C and recruited to the synapse in response to stimulation. Loss of function of SLAMR reduced dendritic complexity and impaired activity dependent changes in spine structural plasticity. Interestingly, gain of function of SLAMR enhanced dendritic complexity, and spine density through enhanced translation. Analyses of the SLAMR interactome revealed its association with CaMKIIα protein through a 220-nucleotide element and its modulation of CaMKIIα activity. Furthermore, loss-of-function of SLAMR in CA1 selectively impairs consolidation but neither acquisition, recall, nor extinction of fear memory and spatial memory. Together, these results establish a new mechanism for activity dependent changes at the synapse and consolidation of contextual fear.

16.
Methods Mol Biol ; 2431: 23-48, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35412270

RESUMEN

Axonal transport moves proteins, RNAs, and organelles between the soma and synapses to support synaptic function and activity-dependent changes in synaptic strength. This transport is impaired in several neurodegenerative disorders such as Alzheimer's disease. Thus, it is critical to understand the regulation and underlying mechanisms of the transport process. Aplysia californica provides a powerful experimental system for studying the interplay between synaptic activity and transport because its defined synaptic circuits can be built in-vitro. Advantages include precise pre- and postsynaptic manipulation, and high-resolution imaging of axonal transport. Here, we describe methodologies for the quantitative analysis of axonal transport in Aplysia sensory neurons.


Asunto(s)
Aplysia , Sinapsis , Animales , Aplysia/fisiología , Transporte Axonal/fisiología , Orgánulos/metabolismo , Células Receptoras Sensoriales , Sinapsis/metabolismo
17.
Cells ; 10(1)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445569

RESUMEN

Neurons, regarded as post-mitotic cells, are characterized by their extensive dendritic and axonal arborization. This unique architecture imposes challenges to how to supply materials required at distal neuronal components. Kinesins are molecular motor proteins that mediate the active delivery of cellular materials along the microtubule cytoskeleton for facilitating the local biochemical and structural changes at the synapse. Recent studies have made intriguing observations that some kinesins that function during neuronal mitosis also have a critical role in post-mitotic neurons. However, we know very little about the function and regulation of such kinesins. Here, we summarize the known cellular and biochemical functions of mitotic kinesins in post-mitotic neurons.


Asunto(s)
Cinesinas/metabolismo , Mitosis , Neuronas/citología , Neuronas/metabolismo , Animales , Humanos , Microtúbulos/metabolismo , Modelos Biológicos , Plasticidad Neuronal/fisiología
18.
Mol Brain ; 14(1): 162, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749771

RESUMEN

Molecular and cellular mechanisms underlying the role of the prelimbic cortex in contextual fear memory remain elusive. Here we examined the kinesin family of molecular motor proteins (KIFs) in the prelimbic cortex for their role in mediating contextual fear, a form of associative memory. KIFs function as critical mediators of synaptic transmission and plasticity by their ability to modulate microtubule function and transport of gene products. However, the regulation and function of KIFs in the prelimbic cortex insofar as mediating memory consolidation is not known. We find that within one hour of contextual fear conditioning, the expression of KIF3B is upregulated in the prelimbic but not the infralimbic cortex. Importantly, lentiviral-mediated knockdown of KIF3B in the prelimbic cortex produces deficits in consolidation while reducing freezing behavior during extinction of contextual fear. We also find that the depletion of KIF3B increases spine density within prelimbic neurons. Taken together, these results illuminate a key role for KIF3B in the prelimbic cortex as far as mediating contextual fear memory.


Asunto(s)
Extinción Psicológica , Memoria , Corteza Cerebral , Extinción Psicológica/fisiología , Miedo/fisiología , Memoria/fisiología , Corteza Prefrontal/metabolismo
19.
Sci Adv ; 7(16)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33863727

RESUMEN

Activity-dependent structural plasticity at the synapse requires specific changes in the neuronal transcriptome. While much is known about the role of coding elements in this process, the role of the long noncoding transcriptome remains elusive. Here, we report the discovery of an intronic long noncoding RNA (lncRNA)-termed ADEPTR-that is up-regulated and synaptically transported in a cAMP/PKA-dependent manner in hippocampal neurons, independently of its protein-coding host gene. Loss of ADEPTR function suppresses activity-dependent changes in synaptic transmission and structural plasticity of dendritic spines. Mechanistically, dendritic localization of ADEPTR is mediated by molecular motor protein Kif2A. ADEPTR physically binds to actin-scaffolding regulators ankyrin (AnkB) and spectrin (Sptn1) via a conserved sequence and is required for their dendritic localization. Together, this study demonstrates how activity-dependent synaptic targeting of an lncRNA mediates structural plasticity at the synapse.

20.
Cell Rep ; 36(2): 109369, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260917

RESUMEN

Synaptic structural plasticity, key to long-term memory storage, requires translation of localized RNAs delivered by long-distance transport from the neuronal cell body. Mechanisms and regulation of this system remain elusive. Here, we explore the roles of KIF5C and KIF3A, two members of kinesin superfamily of molecular motors (Kifs), and find that loss of function of either kinesin decreases dendritic arborization and spine density whereas gain of function of KIF5C enhances it. KIF5C function is a rate-determining component of local translation and is associated with ∼650 RNAs, including EIF3G, a regulator of translation initiation, and plasticity-associated RNAs. Loss of function of KIF5C in dorsal hippocampal CA1 neurons constrains both spatial and contextual fear memory, whereas gain of function specifically enhances spatial memory and extinction of contextual fear. KIF5C-mediated long-distance transport of local translation substrates proves a key mechanism underlying structural plasticity and memory.


Asunto(s)
Cinesinas/metabolismo , Memoria a Largo Plazo , Proteínas Motoras Moleculares/metabolismo , Plasticidad Neuronal , Biosíntesis de Proteínas , Animales , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Espinas Dendríticas/metabolismo , Potenciales Postsinápticos Excitadores , Miedo , Femenino , Mutación con Ganancia de Función , Células HEK293 , Hipocampo/metabolismo , Humanos , Aprendizaje , Masculino , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Trastornos de la Memoria/fisiopatología , Ratones Endogámicos C57BL , Transporte de ARN , Transducción de Señal , Sinapsis/metabolismo , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA