Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Immunity ; 48(3): 570-583.e8, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29562203

RESUMEN

Polymorphisms in NFKB1 that diminish its expression have been linked to human inflammatory diseases and increased risk for epithelial cancers. The underlying mechanisms are unknown, and the link is perplexing given that NF-κB signaling reportedly typically exerts pro-tumorigenic activity. Here we have shown that NF-κB1 deficiency, even loss of a single allele, resulted in spontaneous invasive gastric cancer (GC) in mice that mirrored the histopathological progression of human intestinal-type gastric adenocarcinoma. Bone marrow chimeras revealed that NF-κB1 exerted tumor suppressive functions in both epithelial and hematopoietic cells. RNA-seq analysis showed that NF-κB1 deficiency resulted in aberrant JAK-STAT signaling, which dysregulated expression of effectors of inflammation, antigen presentation, and immune checkpoints. Concomitant loss of STAT1 prevented these immune abnormalities and GC development. These findings provide mechanistic insight into how polymorphisms that attenuate NFKB1 expression predispose humans to epithelial cancers, highlighting the pro-tumorigenic activity of STAT1 and identifying targetable vulnerabilities in GC.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Inflamación/genética , Inflamación/metabolismo , FN-kappa B/deficiencia , Factor de Transcripción STAT1/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Animales , Presentación de Antígeno/inmunología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Redes Reguladoras de Genes , Humanos , Inflamación/patología , Ratones , Ratones Noqueados , Factor de Transcripción STAT1/deficiencia , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología
2.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38542101

RESUMEN

There are a limited number of clinically useful serum biomarkers to predict tumor onset or treatment response in gastric cancer (GC). For this reason, we explored the serum proteome of the gp130Y757F murine model of intestinal-type gastric cancer (IGC). We identified 30 proteins with significantly elevated expression in early gp130Y757F IGC and 12 proteins that were significantly elevated in late gp130Y757F IGC compared to age- and gender-matched wild-type mice. Within these signatures, there was an overlap of 10 proteins commonly elevated in both early- and late-stage disease. These results highlight the potential to identify serum biomarkers of disease stage. Since IGC in the gp130Y757F model can be reversed following therapeutic inhibition of Interleukin (IL)-11, we explored whether the protein signatures we identified could be used to monitor tumor regression. We compared two different therapeutic modalities and found 5 proteins to be uniquely differentially expressed between control animals and animals halfway through treatment, with 10 differentially expressed at the end of treatment. Our findings highlight the potential to identify reliable biomarkers to track IGC tumor regression in response to treatment.


Asunto(s)
Transducción de Señal , Neoplasias Gástricas , Ratones , Animales , Transducción de Señal/fisiología , Neoplasias Gástricas/patología , Receptor gp130 de Citocinas/metabolismo , Biomarcadores , Biomarcadores de Tumor
3.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834778

RESUMEN

Glioblastoma cells adapt to changes in glucose availability through metabolic plasticity allowing for cell survival and continued progression in low-glucose concentrations. However, the regulatory cytokine networks that govern the ability to survive in glucose-starved conditions are not fully defined. In the present study, we define a critical role for the IL-11/IL-11Rα signalling axis in glioblastoma survival, proliferation and invasion when cells are starved of glucose. We identified enhanced IL-11/IL-11Rα expression correlated with reduced overall survival in glioblastoma patients. Glioblastoma cell lines over-expressing IL-11Rα displayed greater survival, proliferation, migration and invasion in glucose-free conditions compared to their low-IL-11Rα-expressing counterparts, while knockdown of IL-11Rα reversed these pro-tumorigenic characteristics. In addition, these IL-11Rα-over-expressing cells displayed enhanced glutamine oxidation and glutamate production compared to their low-IL-11Rα-expressing counterparts, while knockdown of IL-11Rα or the pharmacological inhibition of several members of the glutaminolysis pathway resulted in reduced survival (enhanced apoptosis) and reduced migration and invasion. Furthermore, IL-11Rα expression in glioblastoma patient samples correlated with enhanced gene expression of the glutaminolysis pathway genes GLUD1, GSS and c-Myc. Overall, our study identified that the IL-11/IL-11Rα pathway promotes glioblastoma cell survival and enhances cell migration and invasion in environments of glucose starvation via glutaminolysis.


Asunto(s)
Glioblastoma , Humanos , Línea Celular , Línea Celular Tumoral , Glioblastoma/metabolismo , Glucosa/metabolismo , Interleucina-11/metabolismo , Receptores de Interleucina-11
4.
Cytokine ; 149: 155750, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34689057

RESUMEN

Interleukin-11 (IL-11) is a cytokine that has been strongly implicated in the pathogenesis of fibrotic diseases and solid malignancies. Elevated IL-11 expression is also associated with several non-malignant inflammatory diseases where its function remains less well-characterized. Here, we summarize current literature surrounding the contribution of IL-11 to the pathogenesis of autoimmune inflammatory diseases, including rheumatoid arthritis, multiple sclerosis, diabetes and systemic sclerosis, as well as other chronic inflammatory conditions such as periodontitis, asthma, chronic obstructive pulmonary disease, psoriasis and colitis.


Asunto(s)
Inflamación/metabolismo , Interleucina-11/metabolismo , Animales , Enfermedades Autoinmunes/metabolismo , Humanos
5.
J Allergy Clin Immunol ; 148(2): 585-598, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33771552

RESUMEN

BACKGROUND: Biallelic variants in IL6ST, encoding GP130, cause a recessive form of hyper-IgE syndrome (HIES) characterized by high IgE level, eosinophilia, defective acute phase response, susceptibility to bacterial infections, and skeletal abnormalities due to cytokine-selective loss of function in GP130, with defective IL-6 and IL-11 and variable oncostatin M (OSM) and IL-27 levels but sparing leukemia inhibitory factor (LIF) signaling. OBJECTIVE: Our aim was to understand the functional and structural impact of recessive HIES-associated IL6ST variants. METHODS: We investigated a patient with HIES by using exome, genome, and RNA sequencing. Functional assays assessed IL-6, IL-11, IL-27, OSM, LIF, CT-1, CLC, and CNTF signaling. Molecular dynamics simulations and structural modeling of GP130 cytokine receptor complexes were performed. RESULTS: We identified a patient with compound heterozygous novel missense variants in IL6ST (p.Ala517Pro and the exon-skipping null variant p.Gly484_Pro518delinsArg). The p.Ala517Pro variant resulted in a more profound IL-6- and IL-11-dominated signaling defect than did the previously identified recessive HIES IL6ST variants p.Asn404Tyr and p.Pro498Leu. Molecular dynamics simulations suggested that the p.Ala517Pro and p.Asn404Tyr variants result in increased flexibility of the extracellular membrane-proximal domains of GP130. We propose a structural model that explains the cytokine selectivity of pathogenic IL6ST variants that result in recessive HIES. The variants destabilized the conformation of the hexameric cytokine receptor complexes, whereas the trimeric LIF-GP130-LIFR complex remained stable through an additional membrane-proximal interaction. Deletion of this membrane-proximal interaction site in GP130 consequently caused additional defective LIF signaling and Stüve-Wiedemann syndrome. CONCLUSION: Our data provide a structural basis to understand clinical phenotypes in patients with IL6ST variants.


Asunto(s)
Receptor gp130 de Citocinas , Síndrome de Job , Simulación de Dinámica Molecular , Mutación Missense , Niño , Receptor gp130 de Citocinas/química , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/inmunología , Citocinas/genética , Citocinas/inmunología , Genes Recesivos , Humanos , Síndrome de Job/genética , Síndrome de Job/inmunología , Masculino , RNA-Seq , Transducción de Señal/genética , Transducción de Señal/inmunología , Secuenciación del Exoma
6.
J Biol Chem ; 295(24): 8285-8301, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32332100

RESUMEN

Interleukin (IL) 11 activates multiple intracellular signaling pathways by forming a complex with its cell surface α-receptor, IL-11Rα, and the ß-subunit receptor, gp130. Dysregulated IL-11 signaling has been implicated in several diseases, including some cancers and fibrosis. Mutations in IL-11Rα that reduce signaling are also associated with hereditary cranial malformations. Here we present the first crystal structure of the extracellular domains of human IL-11Rα and a structure of human IL-11 that reveals previously unresolved detail. Disease-associated mutations in IL-11Rα are generally distal to putative ligand-binding sites. Molecular dynamics simulations showed that specific mutations destabilize IL-11Rα and may have indirect effects on the cytokine-binding region. We show that IL-11 and IL-11Rα form a 1:1 complex with nanomolar affinity and present a model of the complex. Our results suggest that the thermodynamic and structural mechanisms of complex formation between IL-11 and IL-11Rα differ substantially from those previously reported for similar cytokines. This work reveals key determinants of the engagement of IL-11 by IL-11Rα that may be exploited in the development of strategies to modulate formation of the IL-11-IL-11Rα complex.


Asunto(s)
Subunidad alfa del Receptor de Interleucina-11/química , Subunidad alfa del Receptor de Interleucina-11/metabolismo , Interleucina-11/metabolismo , Área Bajo la Curva , Línea Celular Tumoral , Entropía , Humanos , Subunidad alfa del Receptor de Interleucina-11/genética , Modelos Moleculares , Mutación/genética , Unión Proteica , Dominios Proteicos , Relación Estructura-Actividad , Termodinámica
7.
Gastroenterology ; 159(4): 1444-1458.e15, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32569771

RESUMEN

BACKGROUND & AIMS: Activity of nuclear factor κB transcription factors and signaling via signal transducer and activator of transcription (STAT) are frequently altered in gastric cancer cells. Mice lacking NFKB1 (Nfkb1-/- mice) develop invasive gastric cancer, and their gastric tissues have increased levels of cytokines, such as interleukin (IL) 6, IL22, IL11, and tumor necrosis factor (TNF), as well as increased activation of STAT1. We investigated whether these cytokines were required for STAT1 activation in gastric tissues of mice and critical for gastric tumorigenesis. METHODS: We crossed Nfkb1-/- mice with Il6-/-, Il22-/-, Il11Rα-/-, and Tnf-/- mice. Stomach tissues from compound mutant mice were analyzed by histology, immunoblotting, and RNA sequencing. Lymphoid, myeloid, and epithelial cells were isolated from stomachs, and the levels of cytokines were determined by flow cytometric analysis. RESULTS: Nfkb1-/- mice developed gastritis, oxyntic atrophy, gastric dysplasia, and invasive tumors, whereas Nfkb1-/-Stat1-/- mice did not, even when followed for as long as 2 years. The levels of Il6, Il11, Il22, and Tnf messenger RNA were increased in the body and antrum of the stomachs from Nfkb1-/- mice, from 3-6 months of age. However, Nfkb1-/-Il6-/-, Nfkb1-/-Il22-/-, and Nfkb1-/-Il11Rα-/- mice still developed gastric tumors, although the absence of IL11 receptor (IL11R) significantly reduced development of invasive gastric tumors. Stomachs from Nfkb1-/-Tnf-/- mice exhibited significantly less gastritis and oxyntic atrophy and fewer tumors than Nfkb1-/- mice. This correlated with reduced activation of STAT1 and STAT3 and fewer numbers of T cells and B cells infiltrating the gastric body. Loss of STAT1 or TNF significantly reduced expression of PD-L1 on epithelial and myeloid (CD11b+) cells in the gastric mucosa of Nfkb1-/- mice-indeed, to the levels observed on the corresponding cells from wild-type mice. CONCLUSIONS: In studies of gastric tumor development in knockout mice, we found that loss of NFKB1 causes increased expression of TNF in the stomach and thereby drives activation of STAT1, resulting in an inflammatory immune response and the development of gastric cancer. IL11R appears to be required for the progression of gastric tumors to the invasive stage. These findings suggest that inhibitors of TNF, and possibly also inhibitors of IL11/IL11Rα, might be useful in the treatment of gastric cancer.


Asunto(s)
Gastritis/patología , Subunidad p50 de NF-kappa B/metabolismo , Factor de Transcripción STAT1/metabolismo , Neoplasias Gástricas/etiología , Neoplasias Gástricas/patología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Carcinogénesis , Gastritis/etiología , Gastritis/metabolismo , Interleucina-11/metabolismo , Interleucina-6/metabolismo , Ratones , Transducción de Señal , Neoplasias Gástricas/metabolismo
8.
Clin Sci (Lond) ; 134(16): 2091-2115, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32808663

RESUMEN

Pancreatic cancer has one of the poorest prognoses of all malignancies, with little improvement in clinical outcome over the past 40 years. Pancreatic ductal adenocarcinoma is responsible for the vast majority of pancreatic cancer cases, and is characterised by the presence of a dense stroma that impacts therapeutic efficacy and drives pro-tumorigenic programs. More specifically, the inflammatory nature of the tumour microenvironment is thought to underlie the loss of anti-tumour immunity and development of resistance to current treatments. Inflammatory pathways are largely mediated by the expression of, and signalling through, cytokines, chemokines, and other cellular messengers. In recent years, there has been much attention focused on dual targeting of cancer cells and the tumour microenvironment. Here we review our current understanding of the role of IL-6, and the broader IL-6 cytokine family, in pancreatic cancer, including their contribution to pancreatic inflammation and various roles in pancreatic cancer pathogenesis. We also summarise potential opportunities for therapeutic targeting of these pathways as an avenue towards combating poor patient outcomes.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Citocinas/metabolismo , Interleucina-6/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/terapia , Humanos , Janus Quinasa 2/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Microambiente Tumoral
9.
Adv Exp Med Biol ; 1240: 59-72, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32060888

RESUMEN

Interleukin (IL)-18, a member of the IL-1 family of cytokines, has emerged as a key regulator of mucosal homeostasis within the gastrointestinal tract. Like other members of this family, IL-18 is secreted as an inactive protein and is processed into its active form by caspase-1, although other contributors to precursor processing are emerging.Numerous studies have evaluated the role of IL-18 within the gastrointestinal tract using genetic or complementary pharmacological tools and have revealed multiple roles in tumorigenesis. Most striking among these are the divergent roles for IL-18 in colon and gastric cancers. Here, we review our current understanding of IL-18 biology and how this applies to colorectal and gastric cancers.


Asunto(s)
Neoplasias Colorrectales/patología , Interleucina-18/metabolismo , Neoplasias Gástricas/patología , Microambiente Tumoral , Animales , Caspasa 1/metabolismo , Humanos
10.
Growth Factors ; 37(1-2): 1-11, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31161823

RESUMEN

Interleukin (IL)-11 belongs to the IL-6 family of cytokines, discovered over 30 years ago. While early studies focused on the ability of IL-11 to stimulate megakaryocytopoiesis, the importance of this cytokine to inflammatory disease and cancers is only just beginning to be uncovered. This review outlines recent advances in our understanding of IL-11 biology, and highlights the development of novel therapeutics with the potential for clinical targeting of signaling by this cytokine in multiple diseases.


Asunto(s)
Enfermedades Cardiovasculares/genética , Disostosis Craneofacial/genética , Enfermedades del Sistema Inmune/genética , Interleucina-11/genética , Neoplasias/genética , Animales , Humanos , Interleucina-11/metabolismo , Mutación
11.
Cytokine ; 118: 8-18, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-29396054

RESUMEN

Chronic inflammation is recognized as a key tumor-promoting factor in a number of epithelial cancers, including gastric cancer (GC). The production of pro-inflammatory cytokines in the tumor microenvironment by both the innate and the adaptive immune response can activate signaling pathways that are associated with increased cell survival and proliferation of cancer cells. Among the cytokines that have most commonly been linked to inflammation-associated cancers, are the Th17 cell-associated cytokines IL-17A, IL-23, IL-22, and the IL-1 family members IL-1ß and IL-18. However, whether their contribution to inflammation-associated cancers is universal, or specific to individual types of cancers, remains to be elucidated. This review will explore our current understanding of the known roles of these cytokines in gastritis and discuss how their therapeutic inhibition may be useful for GC.


Asunto(s)
Antineoplásicos/inmunología , Interleucina-17/antagonistas & inhibidores , Interleucina-17/inmunología , Interleucina-18/antagonistas & inhibidores , Interleucina-18/inmunología , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/terapia , Animales , Humanos , Inflamación/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
12.
J Autoimmun ; 91: 73-82, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29724515

RESUMEN

Regulatory T (Treg) cells maintain immunological tolerance in steady-state and after immune challenge. Activated Treg cells can undergo further differentiation into an effector state that highly express genes critical for Treg cell function, including ICOS, TIGIT and IL-10, although how this process is controlled is poorly understood. Effector Treg cells also specifically express the transcriptional regulator Blimp-1 whose expression overlaps with many of the canonical markers associated with effector Treg cells, although not all ICOS+TIGIT+ Treg cells express Blimp-1 or IL-10. In this study, we addressed the role of Blimp-1 in effector Treg cell function. Mice lacking Blimp-1 specifically in Treg cells mature normally, but succumb to a multi-organ inflammatory disease later in life. Blimp-1 is not required for Treg cell differentiation, with mutant mice having increased numbers of effector Treg cells, but regulated a suite of genes involved in cell signaling, communication and survival, as well as being essential for the expression of the immune modulatory cytokine IL-10. Thus, Blimp-1 is a marker of effector Treg cells in all contexts examined and is required for the full functionality of these cells during aging.


Asunto(s)
Envejecimiento/inmunología , Inflamación/inmunología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Diferenciación Celular , Células Cultivadas , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Tolerancia Inmunológica , Inflamación/genética , Interleucina-10/genética , Interleucina-10/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Transducción de Señal
13.
Semin Immunol ; 26(1): 29-37, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24434062

RESUMEN

A contiguous intestinal epithelial barrier safeguards against aberrant activation of the immune system and therefore requires molecular mechanisms that ensure effective wound-healing responses. During this processes cytokine-producing myeloid cells serve as rheostats that link the degree of wounding and local inflammation to the epithelial repair response. Likewise, intestinal inflammation is an important factor by which the microenvironment promotes tumorigenesis and the progression of established cancers by facilitating neoplastic cell survival and proliferation. Among the cytokines and chemokines orchestrating this process, those comprising the interleukin (IL) IL6, IL10/IL22 and IL17/IL23 families play a prominent role by virtue of converging on the latent Signal Transducer and Activator of Transcription (Stat)-3. Accordingly, aberrant and persistent Stat3 activation is a frequent observation in cancers of the gastrointestinal tract where it promotes "cancer hallmark capabilities" in the malignant epithelium and suppresses the anti-tumor response of innate and adaptive immune cells. Here, we discuss recent insights arising from situations where persistent activation of the gp130/Stat3 signaling cascades result from excessive abundance of IL6 family cytokines. In particular, we highlight novel and unique roles for IL11 in promoting intestinal wound-healing and, in its corrupted form, enabling and facilitating growth of inflammation-associated and sporadic gastrointestinal tumors.


Asunto(s)
Receptor gp130 de Citocinas/metabolismo , Mucosa Intestinal/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Receptor gp130 de Citocinas/genética , Citocinas/metabolismo , Homeostasis , Humanos , Inflamación/genética , Inflamación/metabolismo , Mucosa Intestinal/patología , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Transducción de Señal
14.
Immunol Cell Biol ; 94(8): 796-801, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27140932

RESUMEN

The transcriptional repressor/activator interferon regulatory factor 8 (IRF8) modulates the differentiation of a multitude of hematopoietic lineages. However, the role of IRF8 in CD4(+) T-cell development is less well defined, with a recent study implicating IRF8 as an intrinsic repressor of interleukin-17 (IL-17) expressing T helper type 17 (Th17) cell differentiation. Using an IRF8-EGFP reporter strain we have confirmed that IRF8 is expressed in all T helper lineages, including Th17 cells. The loss of IRF8 did not affect Th17 differentiation in vitro, beyond a small increase in IL-22 expression. Moreover, IRF8 deficiency did not enhance the Th17 immune response in experimental T-cell transfer colitis. Together, these results suggest that IRF8 does not play an essential intrinsic role in Th17 cell differentiation.


Asunto(s)
Diferenciación Celular , Factores Reguladores del Interferón/metabolismo , Células Th17/citología , Células Th17/metabolismo , Animales , Colitis/inmunología , Colitis/patología , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados
15.
J Pathol ; 236(3): 326-36, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25727407

RESUMEN

NF-κB signalling is an important factor in the development of inflammation-associated cancers. Mouse models of Helicobacter-induced gastric cancer and colitis-associated colorectal cancer have demonstrated that classical NF-κB signalling is an important regulator of these processes. In the stomach, it has also been demonstrated that signalling involving specific NF-κB proteins, including NF-κB1/p50, NF-κB2/p52, and c-Rel, differentially regulate the development of gastric pre-neoplasia. To investigate the effect of NF-κB subunit loss on colitis-associated carcinogenesis, we administered azoxymethane followed by pulsed dextran sodium sulphate to C57BL/6, Nfkb1(-/-), Nfkb2(-/-), and c-Rel(-/-) mice. Animals lacking the c-Rel subunit were more susceptible to colitis-associated cancer than wild-type mice, developing 3.5 times more colonic polyps per animal than wild-type mice. Nfkb2(-/-) mice were resistant to colitis-associated cancer, developing fewer polyps per colon than wild-type mice (median 1 compared to 4). To investigate the mechanisms underlying these trends, azoxymethane and dextran sodium sulphate were administered separately to mice of each genotype. Nfkb2(-/-) mice developed fewer clinical signs of colitis and exhibited less severe colitis and an attenuated cytokine response compared with all other groups following DSS administration. Azoxymethane administration did not fully suppress colonic epithelial mitosis in c-Rel(-/-) mice and less colonic epithelial apoptosis was also observed in this genotype compared to wild-type counterparts. These observations demonstrate different functions of specific NF-κB subunits in this model of colitis-associated carcinogenesis. NF-κB2/p52 is necessary for the development of colitis, whilst c-Rel-mediated signalling regulates colonic epithelial cell turnover following DNA damage.


Asunto(s)
Adenoma/metabolismo , Colitis/complicaciones , Neoplasias del Colon/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Subunidad p52 de NF-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-rel/metabolismo , Adenoma/inducido químicamente , Adenoma/etiología , Animales , Azoximetano/toxicidad , Transformación Celular Neoplásica/metabolismo , Colitis/inducido químicamente , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/etiología , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Células Epiteliales/metabolismo , Femenino , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
16.
J Gastroenterol Hepatol ; 31(7): 1257-72, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26809278

RESUMEN

Gastric cancer is the third leading cause of cancer-related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late-stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new-targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre-clinical development of new therapeutics.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Endogámicos , Ratones Transgénicos , Neoplasias Gástricas/etiología , Animales , Gastrinas , Infecciones por Helicobacter , Helicobacter felis , Helicobacter pylori , Metilnitrosourea , Terapia Molecular Dirigida , Neoplasias Gástricas/clasificación , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia
17.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 9): 2277-85, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25195742

RESUMEN

Interleukin (IL)-11 is a multifunctional member of the IL-6 family of cytokines. Recombinant human IL-11 is administered as a standard clinical treatment for chemotherapy-induced thrombocytopaenia. Recently, a new role for IL-11 signalling as a potent driver of gastrointestinal cancers has been identified, and it has been demonstrated to be a novel therapeutic target for these diseases. Here, the crystal structure of human IL-11 is reported and the structural resolution of residues previously identified as important for IL-11 activity is presented. While IL-11 is thought to signal via a complex analogous to that of IL-6, comparisons show important differences between the two cytokines and it is suggested that IL-11 engages GP130 differently to IL-6. In addition to providing a structural platform for further study of IL-11, these data offer insight into the binding interactions of IL-11 with each of its receptors and the structural mechanisms underlying agonist and antagonist variants of the protein.


Asunto(s)
Interleucina-11/química , Interleucina-6/química , Receptores de Interleucina-11/metabolismo , Cristalografía por Rayos X , Humanos , Interleucina-11/metabolismo , Modelos Moleculares , Conformación Proteica , Ultracentrifugación
18.
Methods Mol Biol ; 2823: 77-93, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39052215

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a lethal solid malignancy with many patients succumbing to the disease within 6 months of diagnosis. The mechanisms that underlie PDAC initiation and progression are poorly understood. Current treatment options are primarily limited to chemotherapy, which is often provided with palliative intent. Unfortunately, there are no robust biomarkers to guide treatment selection or monitor treatment response. This is concerning given the increasing incidence of this cancer. We and others have generated organoid models to explore the biology underlying PDAC with the goal of identifying new therapeutic targets. Here we provide protocols to generate a preclinical PDAC organoid model and methods to use these to define the proteomic landscape of this cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Organoides , Neoplasias Pancreáticas , Proteómica , Organoides/metabolismo , Proteómica/métodos , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Animales , Proteoma , Biomarcadores de Tumor/metabolismo , Ratones
19.
Methods Mol Biol ; 2691: 257-262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37355552

RESUMEN

The utilization of preclinical murine models of colorectal cancer (CRC) has been essential to our understanding of the onset and progression of disease. As the genetic complexity of these models evolves to better recapitulate emerging CRC subtypes, our ability to utilize these models to discover and validate novel therapeutic targets will also improve. This will be aided, in part, by the development of live animal imaging techniques, including confocal endomicroscopy for mice. Here in this chapter, we describe the combined use of standard white light endoscopy and confocal endomicroscopy thereby providing a method to rapidly image and assess changes in the colon of an individual live mouse in real time. These methods permit the generation of high-resolution cross-sectional images of the tumor microenvironment for immediate visualization of cells of interest, avoiding the need for euthanasia and tissue collection across multiple cohorts of mice.


Asunto(s)
Colon , Neoplasias , Animales , Ratones , Colon/patología , Endoscopía/métodos , Neoplasias/patología , Microscopía Confocal/métodos , Microambiente Tumoral
20.
Nat Commun ; 14(1): 7543, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985757

RESUMEN

Interleukin (IL-)11, an IL-6 family cytokine, has pivotal roles in autoimmune diseases, fibrotic complications, and solid cancers. Despite intense therapeutic targeting efforts, structural understanding of IL-11 signalling and mechanistic insights into current inhibitors are lacking. Here we present cryo-EM and crystal structures of the human IL-11 signalling complex, including the complex containing the complete extracellular domains of the shared IL-6 family ß-receptor, gp130. We show that complex formation requires conformational reorganisation of IL-11 and that the membrane-proximal domains of gp130 are dynamic. We demonstrate that the cytokine mutant, IL-11 Mutein, competitively inhibits signalling in human cell lines. Structural shifts in IL-11 Mutein underlie inhibition by altering cytokine binding interactions at all three receptor-engaging sites and abrogating the final gp130 binding step. Our results reveal the structural basis of IL-11 signalling, define the molecular mechanisms of an inhibitor, and advance understanding of gp130-containing receptor complexes, with potential applications in therapeutic development.


Asunto(s)
Citocinas , Interleucina-11 , Humanos , Interleucina-11/genética , Receptor gp130 de Citocinas/genética , Interleucina-6/metabolismo , Antígenos CD/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-6/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA