Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 109(34): 13799-804, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22869755

RESUMEN

Conventional chemotherapy not only kills tumor cells but also changes gene expression in treatment-damaged tissues, inducing production of multiple tumor-supporting secreted factors. This secretory phenotype was found here to be mediated in part by a damage-inducible cell-cycle inhibitor p21 (CDKN1A). We developed small-molecule compounds that inhibit damage-induced transcription downstream of p21. These compounds were identified as selective inhibitors of a transcription-regulating kinase CDK8 and its isoform CDK19. Remarkably, p21 was found to bind to CDK8 and stimulate its kinase activity. p21 and CDK8 also cooperate in the formation of internucleolar bodies, where both proteins accumulate. A CDK8 inhibitor suppresses damage-induced tumor-promoting paracrine activities of tumor cells and normal fibroblasts and reverses the increase in tumor engraftment and serum mitogenic activity in mice pretreated with a chemotherapeutic drug. The inhibitor also increases the efficacy of chemotherapy against xenografts formed by tumor cell/fibroblast mixtures. Microarray data analysis revealed striking correlations between CDK8 expression and poor survival in breast and ovarian cancers. CDK8 inhibition offers a promising approach to increasing the efficacy of cancer chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Quinasa 8 Dependiente de Ciclina/fisiología , Regulación Neoplásica de la Expresión Génica , Neoplasias/tratamiento farmacológico , Animales , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Senescencia Celular , Quinasa 8 Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Genómica , Humanos , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Transcripción Genética , Resultado del Tratamiento
2.
Front Microbiol ; 6: 628, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26157433

RESUMEN

Active tumor targeting of nanomedicines has recently shown significant improvements in the therapeutic activity of currently existing drug delivery systems, such as liposomal doxorubicin (Doxil/Caelyx/Lipodox). Previously, we have shown that isolated pVIII major coat proteins of the fd-tet filamentous phage vector, containing cancer cell-specific peptide fusions at their N-terminus, can be used as active targeting ligands in a liposomal doxorubicin delivery system in vitro and in vivo. Here, we show a novel major coat protein isolation procedure in 2-propanol that allows spontaneous incorporation of the hydrophobic protein core into preformed liposomal doxorubicin with minimal damage or drug loss while still retaining the targeting ligand exposed for cell-specific targeting. Using a panel of 12 structurally unique ligands with specificity toward breast, lung, and/or pancreatic cancer, we showed the feasibility of pVIII major coat proteins to significantly increase the throughput of targeting ligand screening in a common nanomedicine core. Phage protein-modified Lipodox samples showed an average doxorubicin recovery of 82.8% across all samples with 100% of protein incorporation in the correct orientation (N-terminus exposed). Following cytotoxicity screening in a doxorubicin-sensitive breast cancer line (MCF-7), three major groups of ligands were identified. Ligands showing the most improved cytotoxicity included: DMPGTVLP, ANGRPSMT, VNGRAEAP, and ANDVYLD showing a 25-fold improvement (p < 0.05) in toxicity. Similarly DGQYLGSQ, ETYNQPYL, and GSSEQLYL ligands with specificity toward a doxorubicin-insensitive pancreatic cancer line (PANC-1) showed significant increases in toxicity (2-fold; p < 0.05). Thus, we demonstrated proof-of-concept that pVIII major coat proteins can be screened in significantly higher throughput to identify novel ligands displaying improved therapeutic activity in a desired cancer phenotype.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA