Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lasers Med Sci ; 36(7): 1437-1444, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33156475

RESUMEN

Endoscopic submucosal dissection (ESD) is clinically used to remove early gastric cancer in stomach. The aim of the current study is to examine a therapeutic capacity of pulsed Ho:YAG laser for the development of laser-assisted ESD under various surgical parameters. Ex vivo porcine stomach tissue was ablated with 1-J Ho:YAG pulses at 10 Hz at different number of treatments (NT = 1, 2, and 3) and treatment speeds (TS = 0.5, 1, and 2 mm/s) without and with saline injection. Regardless of saline injection, straight tissue ablation showed that ablation depth increased with increasing NT and decreasing TS. At NT = 3 and TS = 0.5 mm/s, no saline injection yielded the maximum ablation depth (3.4 ± 0.3 mm), partially removing muscularis propria. However, saline injection confined the tissue ablation within a submucosal layer (2.1 ± 0.3 mm). Thermal injury was found to be 0.7~1.1 mm in the adjacent tissue with superficial carbonization. Circular tissue ablation (2 cm in diameter) at NT = 3 and TS = 0.5 mm/s presented that no saline injection yielded a reduction in the lesion area, whereas saline injection maintained the ablated lesion area. Histological analysis revealed that unlike no saline injection, saline injection ablated the entire mucosal layer without perforation in the muscular propria. The pulsed Ho:YAG laser can be a potential surgical tool for clinical ESD to incise a target lesion without adverse perforation. Further investigations will validate the efficacy and safety of the Ho:YAG laser-assisted ESD in in vivo porcine stomach models for clinical translation.


Asunto(s)
Resección Endoscópica de la Mucosa , Terapia por Láser , Láseres de Estado Sólido , Neoplasias Gástricas , Animales , Láseres de Estado Sólido/uso terapéutico , Neoplasias Gástricas/cirugía , Porcinos
2.
Cancers (Basel) ; 13(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800182

RESUMEN

Conventional photothermal therapy (PTT) for cancer typically employs an end-firing flat fiber (Flat) to deliver laser energy, leading to the incomplete treatment of target cells due to a Gaussian-shaped non-uniform beam profile. The purpose of the current study is to evaluate the feasibility of multi-lens arrays (MLA) for enhanced PTT by delivering laser light in a fractional micro-beam pattern. Computational and experimental evaluations compare the photothermal responses of gelatin phantoms and aqueous dye solutions to irradiations with Flat and MLA. In vivo colon cancer models have been developed to validate the therapeutic capacity of MLA-assisted irradiation. MLA yields 1.6-fold wider and 1.9-fold deeper temperature development in the gelatin phantom than Flat, and temperature monitoring identified the optimal treatment condition at an irradiance of 2 W/cm2 for 180 s. In vivo tests showed that the MLA group was accompanied by complete tumor eradication, whereas the Flat group yielded incomplete removal and significant tumor regrowth 14 days after PTT. The proposed MLA-assisted PTT spatially augments photothermal effects with the fractional micro-beams on the tumor and helps achieve complete tumor removal without recurrence. Further investigations are expected to optimize treatment conditions with various wavelengths and photosensitizers to warrant treatment efficacy and safety for clinical translation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA