Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Am Chem Soc ; 146(34): 24061-24074, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39143005

RESUMEN

The preparation of high-sulfur content organosulfur polymers has generated considerable interest as an emerging area in polymer science that has been driven by advances in the inverse vulcanization polymerization of elemental sulfur with organic comonomers. While numerous new inverse vulcanized polysulfides have been made over the past decade, insights into the mechanism of inverse vulcanization and structural characterization of the high-sulfur-content copolymers remain limited in scope. Furthermore, the exploration of new molecular architectures for organic comonomer synthesis remains an important frontier to enhance the properties of these new polymeric materials. In the current report, the first detailed study on the synthesis and inverse vulcanization of polycyclic rigid comonomers derived from norbornadiene was conducted, affording a quantitative assessment of polymer microstructure for these organopolysulfides and insights into the inverse vulcanization polymerization mechanism for this class of monomers. In particular, a stereoselective synthesis of the endo-exo norbornadiene cyclopentadiene adduct (Stillene) was achieved, which enabled direct comparison with the known exo-exo norbornadiene dimer (NBD2) previously used for inverse vulcanization. Reductive degradation of these sulfur copolymers and detailed structural analysis of the recovered sulfurated organic fragments revealed that remarkable exo-stereospecificity was achieved in the inverse vulcanization of elemental sulfur with both these polycyclic dienyl comonomers, which correlated to the robust thermomechanical properties associated with organopolysulfides made from NBD2 previously. Melt processing and molding of these sulfur copolymers were conducted to fabricate free-standing plastic lenses for long-wave infrared thermal imaging.

2.
Angew Chem Int Ed Engl ; 63(7): e202315963, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38225715

RESUMEN

Dithiophosphoric acids (DTPAs) are an intriguing class of compounds that are sourced from elemental sulfur and white phosphorus and are prepared from the reaction of phosphorus pentasulfide with alcohols. The electrophilic addition of DTPAs to alkenes and unsaturated olefinic substrates is a known reaction, but has not been applied to polymer synthesis and polymer functionalization. We report on the synthesis and application of DTPAs for the functionalization of challenging poly-enes, namely polyisoprene (PI) and polynorbornene (pNB) prepared by ring-opening metathesis polymerization (ROMP). The high heteroatom content within DTPA moieties impart intriguing bulk properties to poly-ene materials after direct electrophilic addition reactions to the polymer backbone introducing DTPAs as side chain groups. The resulting materials possess both enhanced optical and flame retardant properties vs the poly-ene starting materials. Finally, we demonstrate the ability to prepare crosslinked polydiene films with di-functional DTPAs, where the crosslinking density and thermomechanical properties can be directly tuned by DTPA feed ratios.

3.
J Am Chem Soc ; 145(25): 13912-13919, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37315082

RESUMEN

A molecular catalyst attached to an electrode surface can offer the advantages of both homogeneous and heterogeneous catalysis. Unfortunately, some molecular catalysts constrained to a surface lose much or all of their solution performance. In contrast, we found that when a small molecule [2Fe-2S] catalyst is incorporated into metallopolymers of the form PDMAEMA-g-[2Fe-2S] (PDMAEMA = poly(2-dimethylamino)ethyl methacrylate) and adsorbed to the surface, the observed rate of hydrogen production increases to kobs > 105 s-1 per active site with lower overpotential, increased lifetime, and tolerance to oxygen. Herein, the electrocatalytic performances of these metallopolymers with different length polymer chains are compared to reveal the factors that lead to this high performance. It was anticipated that smaller metallopolymers would have faster rates due to faster electron and proton transfers to more accessible active sites, but the experiments show that the rates of catalysis per active site are independent of the polymer size. Molecular dynamics modeling reveals that the high performance is a consequence of adsorption of these metallopolymers on the surface with natural assembly that brings the [2Fe-2S] catalytic sites into close contact with the electrode surface while maintaining exposure of the sites to protons in solution. The assembly is conducive to fast electron transfer, fast proton transfer, and a high rate of catalysis regardless of the polymer size. These results offer a guide to enhancing the performance of other electrocatalysts with incorporation into a polymer that provides an optimal interaction of the catalyst with the electrode and solution.

4.
J Am Chem Soc ; 145(22): 12386-12397, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224413

RESUMEN

Organosulfur polymers, such as those derived from elemental sulfur, are an important new class of macromolecules that have recently emerged via the inverse vulcanization process. Since the launching of this new field in 2013, the development of new monomers and organopolysulfide materials based on the inverse vulcanization process is now an active area in polymer chemistry. While numerous advances have been made over the last decade concerning this polymerization process, insights into the mechanism of inverse vulcanization and structural characterization of the high-sulfur-content copolymers that are produced remain challenging due to the increasing insolubility of the materials with a higher sulfur content. Furthermore, the high temperatures used in this process can result in side reactions and complex microstructures of the copolymer backbone, complicating detailed characterization. The most widely studied case of inverse vulcanization to date remains the reaction between S8 and 1,3-diisopropenylbenzene (DIB) to form poly(sulfur-random-1,3-diisopropenylbenzene)(poly(S-r-DIB)). Here, to determine the correct microstructure of poly(S-r-DIB), we performed comprehensive structural characterizations of poly(S-r-DIB) using nuclear magnetic resonance spectroscopy (solid state and solution) and analysis of sulfurated DIB units using designer S-S cleavage polymer degradation approaches, along with complementary de novo synthesis of the sulfurated DIB fragments. These studies reveal that the previously proposed repeating units for poly(S-r-DIB) were incorrect and that the polymerization mechanism of this process is significantly more complex than initially proposed. Density functional theory calculations were also conducted to provide mechanistic insights into the formation of the derived nonintuitive microstructure of poly(S-r-DIB).

5.
J Am Chem Soc ; 145(50): 27821-27829, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38060430

RESUMEN

The synthesis of deuterated, sulfurated, proton-free, glassy polymers offers a route to optical polymers for infrared (IR) optics, specifically for midwave IR (MWIR) photonic devices. Deuterated polymers have been utilized to enhance neutron cross-sectional contrast with proteo polymers for morphological neutron scattering measurements but have found limited utility for other applications. We report the synthesis of perdeuterated d14-(1,3-diisopropenylbenzene) with over 99% levels of deuteration and the preparation of proton-free, perdeuterated poly(sulfur-random-d14-(1,3-diisopropenylbenzene)) (poly(S-r-d14-DIB)) via inverse vulcanization with elemental sulfur. Detailed structural analysis and quantum computational calculations of these reactions demonstrate significant kinetic isotope effects, which alter mechanistic pathways to form different copolymer microstructures for deutero vs proteo poly(S-r-DIB). This design also allows for molecular engineering of MWIR transparency by shifting C-H bond vibrations around 3.3 µm/3000 cm-1 observed in proteo poly(S-r-DIB) to 4.2 µm/2200 cm-1. Furthermore, the fabrication of thin-film MWIR optical gratings made from molding of deuterated-sulfurated, proton-free poly(S-r-d14-DIB) is demonstrated; operation of these gratings at 3.39 µm is achieved successfully, while the proteo poly(S-r-DIB) gratings are opaque at these wavelengths, highlighting the promise of MWIR sensors and compact spectrometers from these materials.

6.
Proc Natl Acad Sci U S A ; 117(52): 32947-32953, 2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33310905

RESUMEN

Electrocatalytic generation of H2 is challenging in neutral pH water, where high catalytic currents for the hydrogen evolution reaction (HER) are particularly sensitive to the proton source and solution characteristics. A tris(hydroxymethyl)aminomethane (TRIS) solution at pH 7 with a [2Fe-2S]-metallopolymer electrocatalyst gave catalytic current densities around two orders of magnitude greater than either a more conventional sodium phosphate solution or a potassium chloride (KCl) electrolyte solution. For a planar polycrystalline Pt disk electrode, a TRIS solution at pH 7 increased the catalytic current densities for H2 generation by 50 mA/cm2 at current densities over 100 mA/cm2 compared to a sodium phosphate solution. As a special feature of this study, TRIS is acting not only as the primary source of protons and the buffer of the pH, but the protonated TRIS ([TRIS-H]+) is also the sole cation of the electrolyte. A species that is simultaneously the proton source, buffer, and sole electrolyte is termed a protic buffer electrolyte (PBE). The structure-activity relationships of the TRIS PBE that increase the HER rate of the metallopolymer and platinum catalysts are discussed. These results suggest that appropriately designed PBEs can improve HER rates of any homogeneous or heterogeneous electrocatalyst system. General guidelines for selecting a PBE to improve the catalytic current density of HER systems are offered.

7.
J Am Chem Soc ; 144(1): 5-22, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34936350

RESUMEN

The production of elemental sulfur from petroleum refining has created a technological opportunity to increase the valorization of elemental sulfur by the synthesis of high-performance sulfur-based plastics with improved optical, electrochemical, and mechanical properties aimed at applications in thermal imaging, energy storage, self-healable materials, and separation science. In this Perspective, we discuss efforts in the past decade that have revived this area of organosulfur and polymer chemistry to afford a new class of high-sulfur-content polymers prepared from the polymerization of liquid sulfur with unsaturated monomers, termed inverse vulcanization.

8.
J Am Chem Soc ; 144(50): 23044-23052, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36475699

RESUMEN

A polymerization methodology is reported using sulfur monochloride (S2Cl2) as an alternative feedstock for polymeric materials. S2Cl2 is an inexpensive petrochemical derived from elemental sulfur (S8) but has numerous advantages as a reactive monomer for polymerization vs S8. This new process, termed sulfenyl chloride inverse vulcanization, exploits the high reactivity and miscibility of S2Cl2 with a broad range of allylic monomers to prepare soluble, high molar-mass linear polymers, segmented block copolymers, and crosslinked thermosets with greater synthetic precision than achieved using classical inverse vulcanization. This step-growth addition polymerization also allows for preparation of a new class of thiol-free, inexpensive, highly optically transparent thermosets (α = 0.045 cm-1 at 1310 nm), which exhibit among the best optical transparency and low birefringence relative to commodity optical polymers, while possessing a higher refractive index (n > 1.6) in the visible and near-infrared spectra. The fabrication of large-sized optical components is also demonstrated.


Asunto(s)
Cloruros , Polímeros , Azufre , Luz , Polimerizacion
9.
Chemistry ; 28(35): e202200115, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35362205

RESUMEN

In this concept review, the fundamental and polymerization chemistry of inverse vulcanization for the preparation of statistical and segmented sulfur copolymers, which have been actively developed and advanced in various applications over the past decade is discussed. This concept review delves into a discussion of step-growth polymerization constructs to describe the inverse vulcanization process and discuss prepolymer approaches for the synthesis of segmented sulfur polyurethanes. Furthermore, this concept review discusses the advantages of inverse vulcanization in conjunction with dynamic covalent polymerization and post-polymerization modifications to prepare segmented block copolymers with enhanced thermomechanical and flame retardant properties of these materials.

10.
Angew Chem Int Ed Engl ; 60(42): 22900-22907, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34402154

RESUMEN

The production of elemental sulfur from petroleum refining has created a technological opportunity to increase the valorization of elemental sulfur by the creation of high-performance sulfur based plastics with improved thermomechanical properties, elasticity and flame retardancy. We report on a synthetic polymerization methodology to prepare the first example of sulfur based segmented multi-block polyurethanes (SPUs) and thermoplastic elastomers that incorporate an appreciable amount of sulfur into the final target material. This approach applied both the inverse vulcanization of S8 with olefinic alcohols and dynamic covalent polymerizations with dienes to prepare sulfur polyols and terpolyols that were used in polymerizations with aromatic diisocyanates and short chain diols. Using these methods, a new class of high molecular weight, soluble block copolymer polyurethanes were prepared as confirmed by Size Exclusion Chromatography, NMR spectroscopy, thermal analysis, and microscopic imaging. These sulfur-based polyurethanes were readily solution processed into large area free standing films where both the tensile strength and elasticity of these materials were controlled by variation of the sulfur polyol composition. SPUs with both high tensile strength (13-24 MPa) and ductility (348 % strain at break) were prepared, along with SPU thermoplastic elastomers (578 % strain at break) which are comparable values to classical thermoplastic polyurethanes (TPUs). The incorporation of sulfur into these polyurethanes enhanced flame retardancy in comparison to classical TPUs, which points to the opportunity to impart new properties to polymeric materials as a consequence of using elemental sulfur.

11.
Macromol Rapid Commun ; 41(1): e1900424, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31631429

RESUMEN

Small molecule biomimetics inspired by the active site of the [FeFe]-hydrogenase enzymes have shown promising electrocatalytic activity for hydrogen (H2 ) generation. However, most of the active-site mimics based on [2Fe-2S] clusters are not water-soluble which limits the use of these electrocatalysts to organic media. Polymer-supported [2Fe-2S] systems, in particular, single-site metallopolymer catalysts, have shown drastic improvements for electrocatalytic H2 generation in aqueous milieu. [2Fe-2S] complexes functionalized within well-defined macromolecular supports via covalent bonding have demonstrated water solubility, enhanced site-isolation, and improved chemical stability during catalysis. In this report, the synthesis of a new propanedithiolate (pdt)-[2Fe-2S] complex bearing a single α-bromoester moiety for use in atom transfer radical polymerization (ATRP) is demonstrated as a novel metalloinitiator to prepare water-soluble poly(2-dimethylaminoethyl methacrylate) grafted (PDMAEMA-g-[2Fe-2S]) metallopolymers. Using this approach, metallopolymers with controllable molecular weights (Mn = 5-40 kg mol-1 ) and low dispersity (D, Mw /Mn = 1.09-1.36) are prepared, which allows for the first time observation of the effect of the metallopolymers' chain length on the electrocatalytic activity. The ability to control the composition and molecular weight of these metallopolymers enables macromolecular engineering via ATRP of these materials to determine optimal structural features of metallopolymer catalysts for H2 production.


Asunto(s)
Hidrógeno/metabolismo , Hierro/química , Polímeros/química , Azufre/química , Catálisis , Dominio Catalítico , Complejos de Coordinación/química , Técnicas Electroquímicas , Hidrógeno/química , Hidrogenasas/química , Conformación Molecular , Peso Molecular , Polimerizacion , Polímeros/síntesis química
12.
Angew Chem Int Ed Engl ; 58(23): 7537-7550, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-30628136

RESUMEN

Reviewed herein is the development of novel polymer-supported [2Fe-2S] catalyst systems for electrocatalytic and photocatalytic hydrogen evolution reactions. [FeFe] hydrogenases are the best known naturally occurring metalloenzymes for hydrogen generation, and small-molecule, [2Fe-2S]-containing mimetics of the active site (H-cluster) of these metalloenzymes have been synthesized for years. These small [2Fe-2S] complexes have not yet reached the same capacity as that of enzymes for hydrogen production. Recently, modern polymer chemistry has been utilized to construct an outer coordination sphere around the [2Fe-2S] clusters to provide site isolation, water solubility, and improved catalytic activity. In this review, the various macromolecular motifs and the catalytic properties of these polymer-supported [2Fe-2S] materials are surveyed. The most recent catalysts that incorporate a single [2Fe-2S] complex, termed single-site [2Fe-2S] metallopolymers, exhibit superior activity for H2 production.


Asunto(s)
Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Metaloproteínas/metabolismo , Catálisis , Dominio Catalítico , Humanos , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Metaloproteínas/química , Oxidación-Reducción
13.
Angew Chem Int Ed Engl ; 58(49): 17656-17660, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31541498

RESUMEN

Optical technologies in the long-wave infrared (LWIR) spectrum (7-14 µm) offer important advantages for high-resolution thermal imaging in near or complete darkness. The use of polymeric transmissive materials for IR imaging offers numerous cost and processing advantages but suffers from inferior optical properties in the LWIR spectrum. A major challenge in the design of LWIR-transparent organic materials is that nearly all organic molecules absorb in this spectral window which lies within the so-called IR-fingerprint region. We report on a new molecular-design approach to prepare high refractive index polymers with enhanced LWIR transparency. Computational methods were used to accelerate the design of novel molecules and polymers. Using this approach, we have prepared chalcogenide hybrid inorganic/organic polymers (CHIPs) with enhanced LWIR transparency and thermomechanical properties via inverse vulcanization of elemental sulfur with new organic co-monomers.

14.
Macromol Rapid Commun ; 39(21): e1800529, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30199132

RESUMEN

Sulfur-containing polymers and poly(ionic liquid)s are emerging macromolecules with unique properties and applications. This article shows the first integration of these two polymer families, leading to materials with a unique combination of properties. The synthetic strategy toward sulfur-containing poly(ionic liquid)s involves first the copolymerization of elemental sulfur with 4-vinylbenzyl chloride and subsequent quaternization of the alkyl chloride group using N-methyl imidazole. The synthetic pathway is completed by the anion exchange reaction of the poly(sulfur-co-4-vinylbenzyl imidazolium chloride) by a sulphonamide anion. The obtained polymers are fully characterized by NMR, FTIR, SEC, DSC, and TGA. The sulfur poly(ionic liquid)s combine some properties related to its poly(ionic liquid) nature, such as anion-dependent solubility (water vs organic solvents) and high ionic conductivity as well as properties related to its sulfur content, such as redox activity.


Asunto(s)
Líquidos Iónicos/química , Polímeros/química , Azufre/química , Estructura Molecular , Oxidación-Reducción , Polímeros/síntesis química , Solubilidad
15.
Angew Chem Int Ed Engl ; 57(37): 11898-11902, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30053346

RESUMEN

Electrocatalytic [FeFe]-hydrogenase mimics for the hydrogen evolution reaction (HER) generally suffer from low activity, high overpotential, aggregation, oxygen sensitivity, and low solubility in water. By using atom-transfer radical polymerization (ATRP), a new class of [FeFe]-metallopolymers with precise molar mass, defined composition, and low polydispersity, has been prepared. The synthetic methodology introduced here allows facile variation of polymer composition to optimize the [FeFe] solubility, activity, and long-term chemical and aerobic stability. Water soluble functional metallopolymers facilitate electrocatalytic hydrogen production in neutral water with loadings as low as 2 ppm and operate at rates an order of magnitude faster than hydrogenases (2.5×105  s-1 ), and with low overpotential requirement. Furthermore, unlike the hydrogenases, these systems are insensitive to oxygen during catalysis, with turnover numbers on the order of 40 000 under both anaerobic and aerobic conditions.


Asunto(s)
Materiales Biomiméticos/química , Complejos de Coordinación/química , Hidrógeno/química , Agua/química , Materiales Biomiméticos/metabolismo , Catálisis , Dominio Catalítico , Complejos de Coordinación/metabolismo , Técnicas Electroquímicas , Electrodos , Hidrógeno/metabolismo , Hidrogenasas/química , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo
16.
Langmuir ; 33(37): 9361-9377, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28616993

RESUMEN

We report the characterization of multiscale 3D structural architectures of novel poly[sulfur-random-(1,3-diisopropenylbenzene)] copolymer-based cathodes for high-energy-density Li-S batteries capable of realizing discharge capacities >1000 mAh/g and long cycling lifetimes >500 cycles. Hierarchical morphologies and interfacial structures have been investigated by a combination of focused Li ion beam (LiFIB) and analytical electron microscopy in relation to the electrochemical performance and physicomechanical stability of the cathodes. Charge-free surface topography and composition-sensitive imaging of the electrodes was performed using recently introduced low-energy scanning LiFIB with Li+ probe sizes of a few tens of nanometers at 5 keV energy and 1 pA probe current. Furthermore, we demonstrate that LiFIB has the ability to inject a certain number of Li cations into the material with nanoscale precision, potentially enabling control of the state of discharge in the selected area. We show that chemical modification of the cathodes by replacing the elemental sulfur with organosulfur copolymers significantly improves its structural integrity and compositional homogeneity down to the sub-5-nm length scale, resulting in the creation of (a) robust functional interfaces and percolated conductive pathways involving graphitic-like outer shells of aggregated nanocarbons and (b) extended micro- and mesoscale porosities required for effective ion transport.

17.
Microsc Microanal ; 22(6): 1198-1221, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27881211

RESUMEN

Poly[sulfur-random-(1,3-diisopropenylbenzene)] copolymers synthesized via inverse vulcanization represent an emerging class of electrochemically active polymers recently used in cathodes for Li-S batteries, capable of realizing enhanced capacity retention (1,005 mAh/g at 100 cycles) and lifetimes of over 500 cycles. The composite cathodes are organized in complex hierarchical three-dimensional (3D) architectures, which contain several components and are challenging to understand and characterize using any single technique. Here, multimode analytical scanning and transmission electron microscopies and energy-dispersive X-ray/electron energy-loss spectroscopies coupled with multivariate statistical analysis and tomography were applied to explore origins of the cathode-enhanced capacity retention. The surface topography, morphology, bonding, and compositions of the cathodes created by combining sulfur copolymers with varying 1,3-diisopropenylbenzene content and conductive carbons have been investigated at multiple scales in relation to the electrochemical performance and physico-mechanical stability. We demonstrate that replacing the elemental sulfur with organosulfur copolymers improves the compositional homogeneity and compatibility between carbons and sulfur-containing domains down to sub-5 nm length scales resulting in (a) intimate wetting of nanocarbons by the copolymers at interfaces; (b) the creation of 3D percolation networks of conductive pathways involving graphitic-like outer shells of aggregated carbons;

18.
Angew Chem Int Ed Engl ; 55(5): 1787-91, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26696128

RESUMEN

We report on the first synthesis of a heterostructured semiconductor tetrapod from CdSe@CdS that carries a single dipolar nanoparticle tip from a core-shell colloid of Au@Co. A four-step colloidal total synthesis was developed, where the key step in the synthesis was the selective deposition of a single AuNP tip onto a CdSe@CdS tetrapod under UV-irradiation. Synthetic accessibility to this dipolar heterostructured tetrapod enabled the use of these as colloidal monomers to form colloidal polymers that carry the semiconductor tetrapod as a side chain group attached to the CoNP colloidal polymer main chain. The current report details a number of novel discoveries on the selective synthesis of an asymmetric heterostructured tetrapod that is capable of 1D dipolar assembly into colloidal polymers that carry tetrapods as side chain groups that mimic "giant tert-butyl groups".

19.
Macromol Rapid Commun ; 36(11): 1103-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25847485

RESUMEN

Sulfur-rich materials have recently attracted keen interest for their potentials in optical, electrochemical, and pesticidal applications as well as their utility in dynamic covalent bond chemistry. Many sulfur-rich polymers, however, are insoluble and processing methods are therefore very limited. The synthesis and characterization of water-dispersible polymer nanoparticles (NPs) with the sulfur content exceeding 75% by weight, obtained from the interfacial polymerization between 1,2,3-trichloropropane and sodium polysulfide in water is reported here. The interfacial polymerization yields well-defined sulfur-rich NPs in the presence of surfactants, which are capable of serving a dual role as a phase transfer catalyst on top of emulsifiers. Such dual role allows for the control of the product NP size by varying its concentration. The surfactants can be easily removed by centrifugation and redispersion in water is also reported here. The resulting sulfur-rich NPs are characterized through elemental analysis, dynamic light scattering, ζ-potential measurements, and scanning electron microscopy.


Asunto(s)
Polímeros/química , Propano/análogos & derivados , Sulfuros/química , Azufre/química , Agua/química , Dispersión Dinámica de Luz , Nanopartículas/química , Nanopartículas/ultraestructura , Polimerizacion , Propano/química
20.
Angew Chem Int Ed Engl ; 54(11): 3249-58, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25583026

RESUMEN

Elemental sulfur is an abundant and inexpensive material obtained as a by-product of natural-gas and petroleum refining operations. Recently, the need for the development of new energy-storage systems brought into light the potential of sulfur as a high-capacity cathode material in secondary batteries. Sulfur-containing materials were also shown to have useful IR optical properties. These developments coupled with growing environmental concerns related to the global production of excess elemental sulfur have led to a keen interest in its utilization as a feedstock in materials applications. This Minireview focuses on the recent developments on physical and chemical methods for directly processing elemental sulfur to produce functional composites and polymers.


Asunto(s)
Polímeros/química , Azufre/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA