Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant Cell Physiol ; 64(6): 686-699, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37036744

RESUMEN

Reactive oxygen species (ROS) are highly reactive molecules, generated by nicotinamide adenine dinucleotide phosphate oxidases encoded by respiratory burst oxidase homologs. The functions of the OsRbohs gene family in rice are diverse and poorly understood. OsRbohI was recently identified as a newly evolved gene in the rice OsRbohs gene family. However, the function of OsRbohI in regulating rice growth is not yet reported. In this study, our results indicate that knockout (KO) OsRbohI mutants showed significantly shorter shoot and primary roots, along with lower ROS content than the control lines, whereas the overexpression (OE) lines displayed contrasting results. Further experiments showed that the abnormal length of the shoot and root is mainly caused by altered cell size. These results indicate that OsRbohI regulates rice shoot and root growth through the ROS signal. More importantly, RNA-seq analysis and jasmonic acid (JA) treatment demonstrated that OsRbohI regulates rice growth via the JA synthesis and signaling pathways. Compared with the control, the results showed that the KO mutants were more sensitive to JA, whereas the OE lines were less sensitive to JA. Collectively, our results reveal a novel pathway in which OsRbohI regulates rice growth and development by affecting their ROS homeostasis through JA synthesis and signaling pathway.


Asunto(s)
Oryza , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Raíces de Plantas/metabolismo , Oxilipinas/farmacología , Oxilipinas/metabolismo , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Transducción de Señal , Crecimiento y Desarrollo , Regulación de la Expresión Génica de las Plantas
2.
Theor Appl Genet ; 136(5): 108, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37039968

RESUMEN

KEY MESSAGE: Root hairs are required for water and nutrient acquisition in plants. Here, we report a novel mechanism that OsUGE1 is negatively controlled by OsGRF6 to regulate root hair elongation in rice. Root hairs are tubular outgrowths generated by the root epidermal cells. They effectively enlarge the soil-root contact area and play essential roles for nutrient and water absorption. Here, in this study, we demonstrated that the Oryza sativa UDP-glucose 4-epimerase 1-like (OsUGE1) negatively regulated root hair elongation and was directly targeted by Oryza sativa growth regulating factor 6 (OsGRF6). Knockout mutants of OsUGE1 using CRISPR-Cas9 technology showed longer root hairs than those of wild type. In contrast, overexpression lines of OsUGE1 displayed shorter root hair compared with those of wild type. GUS staining showed that it could specifically express in root hair. Subcellular localization analysis indicates that OsUGE1 is located in endoplasmic reticulum, nucleus and plasma membrane. More importantly, ChIP-qPCR, Yeast-one-hybrid and BiFC experiments revealed that OsGRF6 could bind to the promoter of OsUGE1. Furthermore, knockout mutants of OsGRF6 showed shorter root hair than those of wild type, and OsGRF6 dominantly expressed in root. In addition, the expression level of OsUGE1 is significantly downregulated in Osgrf6 mutant. Taken together, our study reveals a novel pathway that OsUGE1 is negatively controlled by OsGRF6 to regulate root hair elongation in rice.


Asunto(s)
Oryza , Oryza/genética , Proteínas de Plantas/genética , Membrana Celular/metabolismo , Regiones Promotoras Genéticas
3.
Proc Natl Acad Sci U S A ; 114(4): E610-E618, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28057866

RESUMEN

The signaling mechanisms that choreograph the assembly of the highly asymmetric pre- and postsynaptic structures are still poorly defined. Using synaptosome fractionation, immunostaining, and coimmunoprecipitation, we found that Celsr3 and Vangl2, core components of the planar cell polarity (PCP) pathway, are localized at developing glutamatergic synapses and interact with key synaptic proteins. Pyramidal neurons from the hippocampus of Celsr3 knockout mice exhibit loss of ∼50% of glutamatergic synapses, but not inhibitory synapses, in culture. Wnts are known regulators of synapse formation, and our data reveal that Wnt5a inhibits glutamatergic synapses formed via Celsr3. To avoid affecting earlier developmental processes, such as axon guidance, we conditionally knocked out Celsr3 in the hippocampus 1 week after birth. The CA1 neurons that lost Celsr3 also showed a loss of ∼50% of glutamatergic synapses in vivo without affecting the inhibitory synapses assessed by miniature excitatory postsynaptic current (mEPSC) and electron microscopy. These animals displayed deficits in hippocampus-dependent behaviors in adulthood, including spatial learning and memory and fear conditioning. In contrast to Celsr3 conditional knockouts, we found that the conditional knockout of Vangl2 in the hippocampus 1 week after birth led to a large increase in synaptic density, as evaluated by mEPSC frequency and spine density. PCP signaling is mediated by multiple core components with antagonizing functions. Our results document the opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation.


Asunto(s)
Cadherinas/fisiología , Hipocampo/fisiología , Proteínas del Tejido Nervioso/fisiología , Células Piramidales/fisiología , Receptores de Superficie Celular/fisiología , Sinapsis/fisiología , Animales , Conducta Animal , Cadherinas/genética , Polaridad Celular , Células Cultivadas , Potenciales Postsinápticos Excitadores , Ácido Glutámico/fisiología , Locomoción , Masculino , Aprendizaje por Laberinto , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Receptores de Superficie Celular/genética , Proteína Wnt-5a/fisiología
4.
Rice (N Y) ; 17(1): 6, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212485

RESUMEN

BACKGROUND: The growth and development of rice (Oryza sativa L.) are affected by multiple factors, such as ROS homeostasis and utilization of iron. Here, we demonstrate that OsUGE2, a gene encoding a UDP-glucose 4-epimerase, controls growth and development by regulating reactive oxygen species (ROS) and iron (Fe) level in rice. Knockout of this gene resulted in impaired growth, such as dwarf phenotype, weakened root growth and pale yellow leaves. Biochemical analysis showed that loss of function of OsUGE2 significantly altered the proportion and content of UDP-Glucose (UDP-Glc) and UDP-Galactose (UDP-Gal). Cellular observation indicates that the impaired growth may result from decreased cell length. More importantly, RNA-sequencing analysis showed that knockout of OsUGE2 significantly influenced the expression of genes related to oxidoreductase process and iron ion homeostasis. Consistently, the content of ROS and Fe are significantly decreased in OsUGE2 knockout mutant. Furthermore, knockout mutants of OsUGE2 are insensitive to both Fe deficiency and hydrogen peroxide (H2O2) treatment, which further confirmed that OsUGE2 control rice growth possibly through Fe and H2O2 signal. Collectively, these results reveal a new pathway that OsUGE2 could affect growth and development via influencing ROS homeostasis and Fe level in rice.

5.
Environ Pollut ; 316(Pt 2): 120639, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36372367

RESUMEN

The pollution of nanoparticles (NPs) has linked with severe negative effects on crop productivity. Thus, effective strategies are needed to mitigate the phytotoxicity of NPs. The aim of present study was to evaluate the efficacy of exogenously applied melatonin (MT) in mitigating the toxic effects of copper oxide nanoparticles (CuO NPs) from maize seedlings. Therefore, we comprehensively investigated the inhibitory effects of MT against CuO NPs-induced toxicity on morpho-physiological, biochemical and ultrastructural levels in maize. Our results show that CuO NPs (300 mg L-1) exposure displayed significantly reduction in all plant growth traits and induced toxicity in maize. Furthermore, 50 µM MT provided maximum plant tolerance against CuO NPs-induced phytotoxicity. It was noticed that MT improved plant growth, biomass, photochemical efficiency (Fv/Fm), chlorophyll contents (Chl a and Chl b), SPAD values and gas exchange attributes (stomatal conductance, net photosynthetic rate, intercellular CO2 concentration and transpiration rate) under CuO NPs stress. In addition, MT enhanced the antioxidant defense system and conferred protection to ultrastructural (mainly chloroplast, thylakoids membrane and plastoglobuli) damages and stomatal closure in maize plants subjected to CuO NPs stress. Together, it can be stated that the exogenous supply of MT improves the resilience of maize plants against the CuO NPs-induced phytotoxicity. Our current findings can be useful for the enhancement of plant growth and yield attributes in CuO NPs-contaminated soils. The reported information can provide insight into the MT pathways that can be used to improve crop stress tolerance in a challenging environment.


Asunto(s)
Melatonina , Nanopartículas del Metal , Nanopartículas , Cobre/química , Plantones , Antioxidantes/farmacología , Antioxidantes/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Zea mays/metabolismo , Nanopartículas/toxicidad , Óxidos/farmacología , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química
6.
Environ Sci Pollut Res Int ; 30(10): 26137-26149, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36350451

RESUMEN

The enormous use of metal-based nanoparticles (NPs) in different sectors may result in enhanced accumulation in agricultural soil, which could impose negative effects on crop productivity. Hence, strategies are needed to explore the mechanisms of copper oxide nanoparticle (CuO NP)-induced toxicity in crops. The present study aimed to investigate the involvement of ethylene in CuO NP-induced toxicity in rice seedlings. Here, our results indicate that 450 mg L-1 of CuO NPs induced toxic effects in rice seedlings. Thus, it was evidenced by the reduced plant biomass accumulation, enhanced oxidative stress indicators, and cellular ultrastructural damages. More importantly, the exogenous supply of ethylene biosynthesis and signaling antagonists cobalt (Co) and silver (Ag) respectively provided tolerance and improved the defense system of rice seedlings against CuO NP toxicity. The ethylene antagonists could significantly reduce the extent of ultrastructural and stomatal damage by controlling the ROS accumulation in rice seedlings under CuO NP stress. Furthermore, Co and Ag augmented the antioxidant defense system against CuO NP-induced toxicity. Contrary to that, all oxidative damage attributes were further enhanced exogenous application of ethylene biosynthesis precursor [1-aminocyclopropane-1-carboxylic acid (ACC)] in the presence of CuO NPs. In addition, ACC could increase the CuO NP-induced stomatal and ultrastructural damages by reducing the ROS-scavenging ability in rice seedlings. Taken together, these results indicate the involvement of ethylene in CuO NP-induced toxicity in rice seedlings.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Oryza , Plantones , Cobre/química , Especies Reactivas de Oxígeno/farmacología , Nanopartículas/toxicidad , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Etilenos , Óxidos/farmacología
7.
Plant Commun ; 4(6): 100642, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37353931

RESUMEN

Nitrate is an important nitrogen source and signaling molecule that regulates plant growth and development. Although several components of the nitrate signaling pathway have been identified, the detailed mechanisms are still unclear. Our previous results showed that OsMADS25 can regulate root development in response to nitrate signals, but the mechanism is still unknown. Here, we try to answer two key questions: how does OsMADS25 move from the cytoplasm to the nucleus, and what are the direct target genes activated by OsMADS25 to regulate root growth after it moves to the nucleus in response to nitrate? Our results demonstrated that OsMADS25 moves from the cytoplasm to the nucleus in the presence of nitrate in an OsNAR2.1-dependent manner. Chromatin immunoprecipitation sequencing, chromatin immunoprecipitation qPCR, yeast one-hybrid, and luciferase experiments showed that OsMADS25 directly activates the expression of OsMADS27 and OsARF7, which are reported to be associated with root growth. Finally, OsMADS25-RNAi lines, the Osnar2.1 mutant, and OsMADS25-RNAi Osnar2.1 lines exhibited significantly reduced root growth compared with the wild type in response to nitrate supply, and expression of OsMADS27 and OsARF7 was significantly suppressed in these lines. Collectively, these results reveal a new mechanism by which OsMADS25 interacts with OsNAR2.1. This interaction is required for nuclear accumulation of OsMADS25, which promotes OsMADS27 and OsARF7 expression and root growth in a nitrate-dependent manner.


Asunto(s)
Nitratos , Oryza , Oryza/metabolismo , Transducción de Señal
8.
Neuron ; 104(3): 559-575.e6, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31447169

RESUMEN

Virtuosic motor performance requires the ability to evaluate and modify individual gestures within a complex motor sequence. Where and how the evaluative and premotor circuits operate within the brain to enable such temporally precise learning is poorly understood. Songbirds can learn to modify individual syllables within their complex vocal sequences, providing a system for elucidating the underlying evaluative and premotor circuits. We combined behavioral and optogenetic methods to identify 2 afferents to the ventral tegmental area (VTA) that serve evaluative roles in syllable-specific learning and to establish that downstream cortico-basal ganglia circuits serve a learning role that is only premotor. Furthermore, song performance-contingent optogenetic stimulation of either VTA afferent was sufficient to drive syllable-specific learning, and these learning effects were of opposite valence. Finally, functional, anatomical, and molecular studies support the idea that these evaluative afferents bidirectionally modulate VTA dopamine neurons to enable temporally precise vocal learning.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Aprendizaje/fisiología , Área Tegmental Ventral/fisiología , Vocalización Animal/fisiología , Animales , Ganglios Basales/fisiología , Corteza Cerebral/fisiología , Pinzones , Masculino , Mesencéfalo/fisiología , Vías Nerviosas , Optogenética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA