Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 694: 149395, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38141557

RESUMEN

SpoVM and SpoIVA are essential proteins for coat assembly in Bacillus subtilis. SpoVM is a membrane curvature sensor, specifically localized on the forespore membrane. SpoIVA is an ATP hydrolase that self-assembles by hydrolyzing ATP. In this work, SpoVM and its mutant SpoVMP9A were obtained by cyanogen bromide cleavage and reconstituted into bicelles. The purification of SpoIVA was achieved through a rigorous process involving Ni-NTA chromatography column and size exclusion chromatography. This study utilized Biacore to obtain a direct determination of the kinetic parameters of interaction between SpoVM (SpoVMP9A) and SpoIVA in Bicelle conditions.


Asunto(s)
Adenosina Trifosfato , Proteínas Bacterianas , Proteínas Fluorescentes Verdes/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Bacillus subtilis/metabolismo , Esporas Bacterianas/metabolismo
2.
CNS Neurosci Ther ; 30(6): e14795, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867401

RESUMEN

AIM: Recent studies have extensively investigated hypothermia as a therapeutic approach for mitigating neural damage. Despite this, bibliometric analyses specifically focusing on this area remain scarce. Consequently, this study aims to comprehensively outline the historical framework of research and to pinpoint future research directions and trends. METHODS: Articles spanning from 2003 to 2023, relevant to both "neuroprotection" and "hypothermia", were sourced from the Web of Science Core Collection. The CiteSpace software facilitated a comprehensive evaluation and analysis of these publications. This analysis included examining the annual productivity, collaboration among nations, institutions, and authors, as well as the network of co-cited references, authors and journals, and the co-occurrence of keywords, and their respective clusters and trends, all of which were visualized. RESULTS: This study included 2103 articles on the neuroprotection effects of hypothermia, noting a consistent increase in publications since 1992. The United States, the University of California System, and Ji Xunming emerged as the most productive nation, institution, and author, respectively. Analysis of the top 10 co-cited publications revealed that seven articles focused on the effects of hypothermia in infants with hypoxic-ischemic encephalopathy, while three studies addressed cardiac arrest. Shankaran S and the journal Stroke were the most frequently co-cited author and journal, respectively. Keyword cluster analysis identified ischemic stroke as the primary focus of hypothermia therapy historically, with cardiac arrest and neonatal hypoxic-ischemic encephalopathy emerging as current research foci. CONCLUSIONS: Recent studies on the neuroprotective effects of hypothermia in cardiac arrest and neonatal hypoxic-ischemic encephalopathy suggest that hypothermia may mitigate neural damage associated with these conditions. However, the application of hypothermia in the treatment of ischemic stroke remains confined to animal models and in vitro studies, with a notable absence of evidence from multicenter randomized controlled trials (RCTs). Further research is required to address this gap.


Asunto(s)
Bibliometría , Hipotermia Inducida , Neuroprotección , Hipotermia Inducida/tendencias , Hipotermia Inducida/métodos , Humanos , Neuroprotección/fisiología , Animales , Hipoxia-Isquemia Encefálica/terapia
3.
J Cereb Blood Flow Metab ; : 271678X241270485, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39129194

RESUMEN

Brain temperature, a crucial yet under-researched neurophysiological parameter, is governed by the equilibrium between cerebral oxygen metabolism and hemodynamics. Therapeutic hypothermia has been demonstrated as an effective intervention for acute brain injuries, enhancing survival rates and prognosis. The success of this treatment hinges on the precise regulation of brain temperature. However, the absence of comprehensive brain temperature monitoring methods during therapy, combined with a limited understanding of human brain heat transmission mechanisms, significantly hampers the advancement of hypothermia-based neuroprotective therapies. Leveraging the principles of bioheat transfer and MRI technology, this study conducted quantitative analyses of brain heat transfer during mild hypothermia therapy. Utilizing MRI, we reconstructed brain structures, estimated cerebral blood flow and oxygen consumption parameters, and developed a brain temperature calculation model founded on bioheat transfer theory. Employing computational cerebral hemodynamic simulation analysis, we established an intracranial arterial fluid dynamics model to predict brain temperature variations across different therapeutic hypothermia modalities. We introduce a noninvasive, spatially resolved, and optimized mathematical bio-heat model that synergizes model-predicted and MRI-derived data for brain temperature prediction and imaging. Our findings reveal that the brain temperature images generated by our model reflect distinct spatial variations across individual participants, aligning with experimentally observed temperatures.

4.
Bioact Mater ; 42: 124-139, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39280580

RESUMEN

Most acute ischemic stroke patients with large vessel occlusion require stent implantation for complete recanalization. Yet, due to ischemia-reperfusion injury, over half of these patients still experience poor prognoses. Thus, neuroprotective treatment is imperative to alleviate the ischemic brain injury, and a proof-of-concept study was conducted on "biodegradable neuroprotective stent". This concept is premised on the hypothesis that locally released Mg2+/H2 from Mg metal within the bloodstream could offer synergistic neuroprotection against reperfusion injury in distant cerebral ischemic tissues. Initially, the study evaluated pure Mg's neuroactive potential using oxygen-glucose deprivation/reoxygenation (OGD/R) injured neuron cells. Subsequently, a pure Mg wire was implanted into the common carotid artery of the transient middle cerebral artery occlusion (MCAO) rat model to simulate human brain ischemia/reperfusion injury. In vitro analyses revealed that pure Mg extract aided mouse hippocampal neuronal cell (HT-22) in defending against OGD/R injury. Additionally, the protective effects of the Mg wire on behavioral abnormalities, neural injury, blood-brain barrier disruption, and cerebral blood flow reduction in MCAO rats were verified. Conclusively, Mg-based biodegradable neuroprotective implants could serve as an effective local Mg2+/H2 delivery system for treating distant cerebral ischemic diseases.

5.
Bioact Mater ; 26: 116-127, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36879558

RESUMEN

Selective endovascular hypothermia has been used to provide cooling-induced cerebral neuroprotection, but current catheters do not support thermally-insulated transfer of cold infusate, which results in an increased exit temperature, causes hemodilution, and limits its cooling efficiency. Herein, air-sprayed fibroin/silica-based coatings combined with chemical vapor deposited parylene-C capping film was prepared on catheter. This coating features in dual-sized-hollow-microparticle incorporated structures with low thermal conductivity. The infusate exit temperature is tunable by adjusting the coating thickness and infusion rate. No peeling or cracking was observed on the coatings under bending and rotational scenarios in the vascular models. Its efficiency was verified in a swine model, and the outlet temperature of coated catheter (75 µm thickness) was 1.8-2.0 °C lower than that of the uncoated one. This pioneering work on catheter thermal insulation coatings may facilitate the clinical translation of selective endovascular hypothermia for neuroprotection in patients with acute ischemic stroke.

6.
CNS Neurosci Ther ; 28(9): 1303-1314, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35702957

RESUMEN

INTRODUCTION: The neuroprotection of acute ischemic stroke patients can be achieved by intra-arterial selective cooling infusion using cold saline, which can decrease brain temperature without influencing the body core temperature. This approach can lead to high burdens on the heart and decreased hematocrit in the scenario of loading a high amount of liquid for longtime usage. Therefore, autologous blood is utilized as perfusate to circumvent those side effects. METHODS: In this study, a prototype instrument with an autologous blood cooling system was developed and further evaluated by a mathematical model for brain temperature estimation. RESULTS: Hypothermia could be achieved due to the adequate cooling capacity of the prototype system, which could provide the lowest cooling temperature into the blood vessel of 10.5°C at 25 rpm (209.7 ± 0.8 ml/min). And, the core body temperature did not alter significantly (-0.7 ~ -0.2°C) after 1-h perfusion. The cooling rate and temperature distributions of the brain were analyzed, which showed a 2°C decrease within the initial 5 min infusion by 44 ml/min and 13.7°C perfusate. CONCLUSION: This prototype instrument system could safely cool simulated blood in vitro and reperfuse it to the target cerebral blood vessel. This technique could promote the clinical application of an autologous blood perfusion system for stroke therapy.


Asunto(s)
Hipotermia Inducida , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Temperatura Corporal , Encéfalo , Frío , Humanos , Hipotermia Inducida/métodos , Accidente Cerebrovascular/terapia , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA