Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nanobiotechnology ; 20(1): 271, 2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690820

RESUMEN

Circulating tumour DNA (ctDNA) has emerged as an ideal biomarker for the early diagnosis and prognosis of gastric cancer (GC). In this work, a pump-free, high-throughput microfluidic chip coupled with catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) as the signal cascade amplification strategy (CHA-HCR) was developed for surface-enhanced Raman scattering (SERS) assays of PIK3CA E542K and TP53 (two GC-related ctDNAs). The chip consisted of six parallel functional units, enabling the simultaneous analysis of multiple samples. The pump-free design and hydrophilic treatment with polyethylene glycol (PEG) realized the automatic flow of reaction solutions in microchannels, eliminating the dependence on external heavy-duty pumps and significantly improving portability. In the reaction region of the chip, products generated by target-triggered CHA initiated the HCR, forming long nicked double-stranded DNA (dsDNA) on the Au nanobowl (AuNB) array surface, to which numerous SERS probes (Raman reporters and hairpin DNA-modified Cu2O octahedra) were attached. This CHA-HCR strategy generated numerous active "hot spots" around the Cu2O octahedra and AuNB surface, significantly enhancing the SERS signal intensity. Using this chip, an ultralow limit of detection (LOD) for PIK3CA E542K (1.26 aM) and TP53 (2.04 aM) was achieved, and the whole process was completed within 13 min. Finally, a tumour-bearing mouse model was established, and ctDNA levels in mouse serum at different stages were determined. To verify the experimental accuracy, the gold-standard qRT-PCR assay was utilized, and the results showed a high degree of consistency. Thus, this rapid, sensitive and cost-effective SERS microfluidic chip has potential as an ideal detection platform for ctDNA monitoring.


Asunto(s)
Técnicas Biosensibles , ADN Tumoral Circulante , Neoplasias Gástricas , Animales , Técnicas Biosensibles/métodos , Fosfatidilinositol 3-Quinasa Clase I , ADN/análisis , Límite de Detección , Ratones , Microfluídica , Espectrometría Raman/métodos , Neoplasias Gástricas/diagnóstico
3.
Molecules ; 24(19)2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31569766

RESUMEN

Gastric cancer is the fifth most common tumor and has the third-highest mortality rate among various malignant tumors, and the survival rate of patients is low. Celastrus orbiculatus extract has been shown to inhibit the activity of a variety of tumors. This study explored the inhibitory effect of the oleanane-type triterpenoid acid 28-hydroxy-3-oxoolean-12-en-29-oic acid molecule from Celastrus orbiculatus extract on gastric cancer cell invasion and metastasis and determined its mechanism. 28-Hydroxy-3-oxoolean-12-en-29-oic acid was first diluted to various concentrations and then used to treat SGC-7901 and BGC-823 cells. Cell proliferation was assessed by an MTT (thiazole blue) assay. Transwell and wound healing assays were used to assess cell invasion and migration. High-content imaging technology was used to further observe the effects of the drug on cell invasion and migration. Western blotting was used to assess the effects on the expression of matrix metalloproteinases (MMPs) and the effects on epithelial-mesenchymal transition (EMT)-related proteins and phosphorylation-related proteins. We found that 28-Hydroxy-3-oxoolean-12-en-29-oic acid inhibited the migration and invasion of SGC-7901 and BGC-823 gastric cancer cells in a dose-dependent manner. Consequently, 28-hydroxy-3-oxoolean-12-en-29-oic acid decreased the expression of EMT-related proteins and MMPs in gastric cancer cells and reduced protein phosphorylation, inhibiting the migration and invasion of gastric cancer cells.


Asunto(s)
Celastrus/química , Extractos Vegetales/farmacología , Triterpenos/farmacología , Biomarcadores , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Metaloproteinasas de la Matriz/metabolismo , Estructura Molecular , Extractos Vegetales/química , Transducción de Señal/efectos de los fármacos , Análisis Espectral , Neoplasias Gástricas/metabolismo , Triterpenos/química
4.
BMC Complement Altern Med ; 18(1): 328, 2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30526568

RESUMEN

BACKGROUND: Celastrus orbiculatus (Celastraceae) are used as traditional Chinese medicine to treat inflammation and cancer. This study aims to evaluate the effect of Celastrus orbiculatus extract (COE) on the apoptosis in human hepatic carcinoma HepG2 cells with mTOR overexpression. METHODS: The stable expression of mTOR in HepG2 cells (HepG2/mTOR+) were established by lipofectin transfection of GV238-mTOR recombinant plasmids and further antibiotic selection. Human hepatic carcinoma HepG2/mTOR+ cells were treated with different concentrations (20, 40, 80, 160, and 320 µg/mL) of COE for 24 h. The cell proliferation upon COE treatment was detected by MTT. Apoptosis was measured by Flow Cytometry. The activity of mTOR signaling pathway was detected by Western Blotting. RESULTS: COE significantly inhibited the proliferation of HepG2/mTOR+ cells. The expression levels of Bax and Caspase-3 protein were increased in the HepG2/mTOR+ cells in a dose-dependent manner. The proteins expression of Bcl2, Bcl-2 L12, mTOR, phospho-mTOR, 4EBP1, phospho-4EBP1, P70S6k, and phospho-P70S6k in HepG2/mTOR+ cells were reduced in dose-dependent manners. Furthermore, COE and mTOR inhibitor rapamycin (RAPA) synergistically induced apoptosis in HepG2/mTOR+ cells by regulating apoptosis-related proteins and inhibiting mTOR signaling pathways. CONCLUSION: COE could inhibit the proliferation of HepG2/mTOR+ cells, and induce the cell apoptosis. The mechanisms may be related to the regulation of the expression of Bcl-2, Bcl-2 L12, and mTOR signaling pathways. These data suggest that COE may be a potential treatment for human hepatocellular carcinoma.


Asunto(s)
Apoptosis/efectos de los fármacos , Celastrus/química , Extractos Vegetales/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , Transducción de Señal/efectos de los fármacos
5.
BMC Complement Altern Med ; 16(1): 387, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716341

RESUMEN

BACKGROUND: Gliomas are highly aggressive tumors of the nervous system, and current treatments fail to improve patient survival. To identify substances that can be used as treatments for gliomas, we examined the effect of Celastrus orbiculatus extract (COE) on the invasion and migration of human glioblastoma U87 and U251 cells in vitro. METHODS: The effects of COE on cell viability and adhesion were tested using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay and cell adhesion assay, respectively. The effects of COE on cell migration and invasion were assessed by a wound-healing assay and transwell migration and invasion assays. The effects of COE on the expression of epithelial-mesenchymal transition (EMT)-related proteins and matrix metalloproteinases (MMPs) were evaluated using western blot and gelatin zymography, respectively. Finally, the effect of COE on actin assembly was observed using phalloidin-tetramethylrhodamine isothiocyanate labeling and confocal laser scanning microscopy. RESULTS: We found that COE inhibited the adhesion, migration, and invasion of U87 and U251 cells in a dose-dependent manner. COE reduced N-cadherin and vimentin expression, increased E-cadherin expression, and reduced MMP-2 and MMP-9 expression in U87 and U251 cells. Furthermore, COE inhibited actin assembly in U87 and U251 cells. CONCLUSIONS: COE attenuates EMT, MMP expression, and actin assembly in human glioblastoma cells, thereby inhibiting their adhesion, migration, and invasion in vitro.


Asunto(s)
Celastrus/química , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Glioblastoma , Extractos Vegetales/farmacología , Línea Celular Tumoral , Citoesqueleto/efectos de los fármacos , Humanos , Invasividad Neoplásica , Extractos Vegetales/química
6.
Clin Lab ; 61(9): 1331-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26554254

RESUMEN

BACKGROUND: The relationship between microRNA-1 (miR-1) expression and prognosis has not been reported in hepatocellular carcinoma (HCC). The present study aimed to explore the clinicopathological significance and the prognostic role of miR-1 in HCC. METHODS: The expression levels of miR-1 were quantified using real-time quantitative PCR (q-PCR) in 40 surgically resected HCC samples and matched adjacent non-cancerous tissues. RESULTS: MiR-1 expression was significantly downregulated in HCC compared with matched non-cancerous tissues. Aberrant miR-1 expression was significantly correlated with gender, expression of hepatitis B virus surface antigen (HBsAg), tumor differentiation, vein invasion, and TNM stage. Patients with low expression of miR-1 had significantly reduced overall survival compared with patients with high expression of miR-1 (p = 0.04).The multivariate Cox regression analysis indicated that miR-1 expression (HR = 2.79; p = 0.005), gender (HR = 0.087; p = 0.005), vein invasion (HR = 0.172; p = 0.007), and TNM stage (HR = 3.421; p = 0.001) were independent prognostic factors for overall survival. CONCLUSIONS: Low miR-1 expression is associated with shortened survival time. MiR-1 may act as a potential prognostic biomarker for HCC patients.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroARNs/biosíntesis , Adulto , Anciano , Biomarcadores de Tumor , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidad , China/epidemiología , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Hepatitis B/epidemiología , Antígenos de Superficie de la Hepatitis B/sangre , Humanos , Estimación de Kaplan-Meier , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Masculino , MicroARNs/genética , Persona de Mediana Edad , Invasividad Neoplásica , Metástasis de la Neoplasia , Pronóstico , Modelos de Riesgos Proporcionales , Reacción en Cadena en Tiempo Real de la Polimerasa , alfa-Fetoproteínas/análisis
7.
BMC Complement Altern Med ; 14: 433, 2014 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-25370696

RESUMEN

BACKGROUND: Celastrus orbiculatus has been used as a folk medicine in China for the treatment of many diseases. In the laboratory, the ethyl acetate extract of Celastrus orbiculatus (COE) displays a wide range of anticancer functions. However, the inhibition of the metastasis mechanism of COE in gastric cancer cells has not been investigated so far. METHODS: The present study was undertaken to determine if the anti-metastasis effect of COE was involved in inhibiting of epithelial-mesenchymal transition (EMT) of human gastric adenocarcinoma SGC-7901 cells. In vitro, a well-established experimental EMT model involving transforming growth factor ß1 (TGF-ß1) was applied. Viability, invasion and migration, protein and mRNA expression of tumor cells were analyzed by MTT assay, transwell assay, western blot and real-time PCR, respectively. The molecular targets of COE in SGC-7901 cells were investigated by two-dimensional gel electrophoresis (2-DE) and MALDI-TOF-TOF mass spectrometer. Overexpression of heat shock protein 27 (HSP27) was performed by transfected with the recombinant retroviral expression plasmid. In vivo, the anti-metastasis mechanisms of COE in the peritoneal gastric cancer xenograft model was explored and the effect was tested. RESULTS: The non-cytostatic concentrations of COE effectively inhibited TGF-ß1 induced EMT process in SGC-7901 cells, which is characterized by prevented morphological changes, increased E-cadherin expression and decreased Vimentin, N-cadherin expression. Moreover, COE inhibited invasion and migration induced by TGF-ß1. Using a comparative proteomics approach, four proteins were identified as differently expressed, with HSP27 protein being one of the most significantly down-regulated proteins induced by COE. Moreover, the activation of nuclear factor κB (NF-κB)/Snail signaling pathway induced by tumor necrosis factor-α (TNF-α) was also attenuated under the pretreatment of COE. Interestingly, overexpression of HSP27 significantly decreases the inhibitory effect of COE on EMT and the NF-κB/Snail pathway. Furthermore, COE significantly reduced the number of peritoneal metastatic nodules in the peritoneal gastric cancer xenograft model. CONCLUSIONS: Taken together, these results suggest that COE inhibits the EMT by suppressing the expression of HSP27, correlating with inhibition of NF-κB/Snail signal pathways in SGC-7901 cells. Based on these results, COE may be considered a novel anti-cancer agent for the treatment of metastasis in gastric cancer.


Asunto(s)
Adenocarcinoma/metabolismo , Antineoplásicos Fitogénicos/administración & dosificación , Celastrus/química , Medicamentos Herbarios Chinos/administración & dosificación , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/fisiopatología , Animales , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Masculino , Ratones , Ratones Desnudos , FN-kappa B/genética , FN-kappa B/metabolismo , Factores de Transcripción de la Familia Snail , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/fisiopatología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
8.
Biomed Opt Express ; 15(1): 14-27, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223175

RESUMEN

Urea and lactate are biomarkers in sweat that is closely associated with human health. This study introduces portable, rapid, sensitive, stable, and high-throughput wearable sweat biosensors utilizing Au-Ag nanoshuttles (Au-Ag NSs) for the simultaneous detection of sweat urea and lactate. The Au-Ag NSs arrays within the biosensor's microfluidic cavity provide a substantial surface-enhanced Raman scattering (SERS) enhancement effect. The limit of detection (LOD) for urea and lactate are 2.35 × 10-6 and 8.66 × 10-7 mol/L, respectively. This wearable sweat biosensor demonstrates high resistance to compression bending, repeatability, and stability and can be securely attached to various body parts. Real-time sweat analysis of volunteers wearing the biosensors during exercise demonstrated the method's practicality. This wearable sweat biosensor holds significant potential for monitoring sweat dynamics and serves as a valuable tool for assessing bioinformation in sweat.

9.
Talanta ; 270: 125563, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134815

RESUMEN

Colorectal cancer (CRC) remains a significant contributor to the global mortality rate, and a single biomarker cannot meet the specificity required for CRC screening. To this end, we developed a multiplexed, pump-free surface-enhanced Raman scattering (SERS) microfluidic chip (LoC-SERS) using a one-step recognition release mechanism; the aptamer-functionalized novel Au nanocrown array (AuNCA) was used as the detection element embedded in the detection zone of the platform for rapid and specific detection of protein markers in multiple samples simultaneously. Here, the corresponding aptamer specifically captured the protein marker, causing the complementary strand of the aptamer carrying the Raman signal molecule to be shed, reducing the SERS signal. Based on this platform, sensitive and specific detection of the target can be accomplished within 15 min with detection limits of 0.031 pg/mL (hnRNP A1) and 0.057 pg/mL (S100P). Meanwhile, the platform was consistent with ELISA results when used to test clinical. By substituting different aptamers, this platform can provide a new solution for the rapid and sensitive detection of protein markers, which has promising applications in future disease detection.


Asunto(s)
Aptámeros de Nucleótidos , Nanopartículas del Metal , Neoplasias , Biomarcadores de Tumor , Proteínas , Espectrometría Raman/métodos , Oro , Límite de Detección
10.
Mol Cell Biochem ; 372(1-2): 221-31, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23001847

RESUMEN

Migration and invasion of fibroblast-like synoviocytes (FLSs) are critical in the pathogenesis of rheumatoid arthritis (RA). Hypoxic conditions are present in RA joints, and hypoxia has been extensively studied in angiogenesis and inflammation. However, its effect on the migration and invasion of RA-FLSs remains unknown. In this study, we observed that RA-FLSs exposed to hypoxic conditions experienced epithelial-mesenchymal transition (EMT), with increased cell migration and invasion. We demonstrated that hypoxia-induced EMT was accompanied by increased hypoxia-inducible factor (HIF)-1α expression and activation of Akt. After knockdown or inhibition of HIF-1α in hypoxia by small interfering RNA or genistein (Gen) treatment, the EMT transformation and invasion ability of FLSs were regained. HIF-1α could be blocked by phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, indicating that HIF-1α activation was regulated by the PI3K/Akt pathway. Administration of LY294002 (20 mg/kg, intra-peritoneally) twice weekly and Gen (25 mg/kg, by gavage) daily for 3 weeks from day 20 after primary immunization in a collagen-induced arthritis rat model, markedly alleviated the clinical signs, radiology progression, synovial hyperplasia, and inflammatory cells infiltration of joints. Thus, results of this study suggest that activation of the PI3K/Akt/HIF-1α pathway plays a pivotal role in mediating hypoxia-induced EMT transformation and invasion of RA-FLSs under hypoxia.


Asunto(s)
Artritis Reumatoide/patología , Transición Epitelial-Mesenquimal , Fibroblastos/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Reumatoide/metabolismo , Hipoxia de la Célula , Movimiento Celular , Cromonas/administración & dosificación , Cromonas/farmacología , Activación Enzimática , Femenino , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Genisteína/administración & dosificación , Genisteína/farmacología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Articulación de la Rodilla/patología , Morfolinas/administración & dosificación , Morfolinas/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , ARN Interferente Pequeño/genética , Ratas , Ratas Wistar , Transducción de Señal , Líquido Sinovial/enzimología , Líquido Sinovial/metabolismo
12.
Int J Nanomedicine ; 18: 2553-2565, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37213349

RESUMEN

Purpose: This paper aims to construct a surface-enhanced Raman spectroscopy (SERS) biosensor based on functionalized Au-Si nanocone arrays (Au-SiNCA) using a dual signal amplification strategy (SDA-CHA) to evaluate telomerase activity during epithelial-mesenchymal transition (EMT) in laryngeal carcinoma (LC). Methods: A SERS biosensor based on functionalized Au-SiNCA was designed with an integrated dual-signal amplification strategy to achieve ultrasensitive detection of telomerase activity during EMT in LC patients. Results: Labeled probes (Au-AgNRs@4-MBA@H1) and capture substrates (Au-SiNCA@H2) were prepared by modifying hairpin DNA and Raman signal molecules. Using this scheme, telomerase activity in peripheral mononuclear cells (PMNC) could be successfully detected with a limit of detection (LOD) as low as 10-6 IU/mL. In addition, biological experiments using BLM treatment of TU686 effectively mimicked the EMT process. The results of this scheme were highly consistent with the ELISA scheme, confirming its accuracy. Conclusion: This scheme provides a reproducible, selective, and ultrasensitive assay for telomerase activity, which is expected to be a potential tool for the early screening of LC in future clinical applications.


Asunto(s)
Técnicas Biosensibles , Carcinoma , Nanopartículas del Metal , Telomerasa , Humanos , Transición Epitelial-Mesenquimal , Nanopartículas del Metal/química , Espectrometría Raman/métodos , Técnicas Biosensibles/métodos , Límite de Detección , Oro/química
13.
Int J Nanomedicine ; 18: 3429-3442, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37383221

RESUMEN

Introduction: As the most common malignant tumor in the world, the prognosis of patients with advanced lung cancer remains poor even after treatment. There are many prognostic marker assays available, but there is still more room for the development of high-throughput and sensitive detection of circulating tumor DNA (ctDNA). Surface-enhanced Raman spectroscopy (SERS), a spectroscopic detection method that has received wide attention in recent years, can achieve exponential amplification of Raman signals by using different metallic nanomaterials. Integrating SERS with signal amplification strategy into the microfluidic chip and applying it to ctDNA detection is expected to be an effective tool for the prognosis of lung cancer treatment effect in the future. Methods: To construct a high-throughput SERS microfluidic chip integrated with enzyme-assisted signal amplification (EASA) and catalytic hairpin self-assembly (CHA) signal amplification strategies, using hpDNA-functionalized Au nanocone arrays (AuNCAs) as capture substrates and cisplatin-treated lung cancer mice to simulate the detection environment for sensitive detection of ctDNA in serum of lung cancer patients after treatment. Results: The SERS microfluidic chip constructed by this scheme, with two reaction zones, can simultaneously and sensitively detect the concentrations of four prognostic ctDNAs in the serum of three lung cancer patients with a limit of detection (LOD) as low as the aM level. The results of the ELISA assay are consistent with this scheme, and its accuracy is guaranteed. Conclusion: This high-throughput SERS microfluidic chip has high sensitivity and specificity in the detection of ctDNA. This could be a potential tool for prognostic assessment of lung cancer treatment efficacy in future clinical applications.


Asunto(s)
Neoplasias Pulmonares , Microfluídica , Animales , Ratones , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Pronóstico , Espectrometría Raman , Modelos Animales de Enfermedad , Oro
14.
Parasit Vectors ; 16(1): 450, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066526

RESUMEN

BACKGROUND: The primary pathophysiological process of sepsis is to stimulate a massive release of inflammatory mediators to trigger systemic inflammatory response syndrome (SIRS), the major cause of multi-organ dysfunction and death. Like other helminths, Echinococcus granulosus induces host immunomodulation. We sought to determine whether E. granulosus cyst fluid (EgCF) displays a therapeutic effect on sepsis-induced inflammation and tissue damage in a mouse model. METHODS: The anti-inflammatory effects of EgCF were determined by in vitro culture with bone marrow-derived macrophages (BMDMs) and in vivo treatment of BALB/C mice with cecal ligation and puncture (CLP)-induced sepsis. The macrophage phenotypes were determined by flow cytometry, and the levels of cytokines in cell supernatants or in sera of mice were measured (ELISA). The therapeutic effect of EgCF on sepsis was evaluated by observing the survival rates of mice for 72 h after CLP, and the pathological injury to the liver, kidney, and lung was measured under a microscope. The expression of TLR-2/MyD88 in tissues was measured by western blot to determine whether TLR-2/MyD88 is involved in the sepsis-induced inflammatory signaling pathway. RESULTS: In vitro culture with BMDMs showed that EgCF promoted macrophage polarization to M2 type and inhibited lipopolysaccharide (LPS)-induced M1 macrophages. EgCF treatment provided significant therapeutic effects on CLP-induced sepsis in mice, with increased survival rates and alleviation of tissue injury. The EgCF conferred therapeutic efficacy was associated with upregulated anti-inflammatory cytokines (IL-10 and TGF-ß) and reduced pro-inflammatory cytokines (TNF-α and INF-γ). Treatment with EgCF induced Arg-1-expressed M2, and inhibited iNOS-expressed M1 macrophages. The expression of TLR-2 and MyD88 in EgCF-treated mice was reduced. CONCLUSIONS: The results demonstrated that EgCF confers a therapeutic effect on sepsis by inhibiting the production of pro-inflammatory cytokines and inducing regulatory cytokines. The anti-inflammatory effect of EgCF is carried out possibly through inducing macrophage polarization from pro-inflammatory M1 to regulatory M2 phenotype to reduce excessive inflammation of sepsis and subsequent multi-organ damage. The role of EgCF in regulating macrophage polarization may be achieved by inhibiting the TLR2/MyD88 signaling pathway.


Asunto(s)
Echinococcus granulosus , Sepsis , Ratones , Animales , Echinococcus granulosus/metabolismo , Líquido Quístico/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Ratones Endogámicos BALB C , Citocinas/metabolismo , Sepsis/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Antiinflamatorios , Lipopolisacáridos
15.
J Tradit Chin Med ; 32(4): 621-6, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23427399

RESUMEN

OBJECTIVE: To investigate the apoptotic effects and underlying molecular mechanisms of Celastrus orbiculatus (C. orbiculatus) extract in human hepatocellular carcinoma cells. METHODS: Human hepatocellular carcinoma cells (HCCLM6) were treated with C. orbiculatus extract (COE) at different nontoxic concentrations (10, 20, 40, 80, and 160 microg/mL). The effect of COE on HCCLM6 viability was examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays. Cellular apoptosis following COE treatment was assessed by flow cytometry and western blot analysis. RESULTS: COE significantly inhibited cell viability and induced apoptosis of HCCLM6 cells in a dose-dependent manner. Apoptosis was accompanied by increased Bax expression and decreased Bcl-2 expression. In addition, COE treatment led to the release of cytochrome c, activation of caspase-3, and cleavage of poly (ADP-ribose) polymerase (PARP). Furthermore, activation of extracellular signal-regulated kinase (ERK), p38 kinase, and c-Jun N-terminal kinase (JNK) phosphorylation, and down-regulation of Akt phosphorylation was observed. CONCLUSION: COE induces mitochondrial-mediated, caspase-dependent apoptosis in HCCLM6 cells, which might be attributed to the activation of mitogen-activated protein kinase (MAPK) and inhibition of Akt signaling pathways. These data suggest that COE may be a potential treatment for human hepatocellular carcinoma.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/fisiopatología , Celastrus/química , Neoplasias Hepáticas/fisiopatología , Mitocondrias/metabolismo , Extractos Vegetales/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citocromos c/genética , Citocromos c/metabolismo , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
16.
Front Chem ; 10: 1000709, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105309

RESUMEN

Nanozymes have attracted great interest owing to their marvelous advantages, such as high stability, facile preparation, and high tunability. In particular, iron sulfide-based nanozymes (termed as ISNs), as one of the most researched nanomaterials with versatile enzyme-mimicking properties, have proved their potential in biomedical applications. In this review, we briefly summarize the classification, catalytic mechanisms of ISNs and then principally introduce ISNs' biomedical applications in biosensors, tumor therapy, antibacterial therapy, and others, demonstrating that ISNs have promising potential for alleviating human health.

17.
J Mater Chem B ; 10(43): 8931-8944, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36268643

RESUMEN

In this study, we apply catalytic hairpin assembly (CHA) as the signal amplification strategy for the quantification of carcinoembryonic antigen (CEA) and cytokeratin fragment antigen 21-1 (CYFRA21-1) with a surface-enhanced Raman scattering (SERS) microfluidic chip (LoC-SERS) as the carrier. Herein, antibody-DNA conjugates are designed to assist the application of CHA amplification in protein detection. In the presence of protein biomarkers, antibody-DNA conjugates can specifically bind to the target proteins, forming the antigen@antibody-DNA conjugates. The terminal free part of the DNA on the conjugates can trigger the CHA events to connect SERS nanotags to capture nanoprobes. Then, micro-magnet can gather the CHA products in a rectangular chamber, resulting in the aggregation of SERS nanotags, which can ultimately generate abundant "hot spots" for SERS signal enhancement. Using this strategy, CEA and CYFRA21-1 can be successfully determined with a limit of detection (LOD) as low as pg mL-1, much lower than recently reported methods. Meanwhile, a non-small cell lung cancer (NSCLC)-xenografted mouse model was established, and SERS was applied to analyze the expression level of CEA and CYFRA21-1 in tumorigenesis and development. The comparison between SERS results and those of the ELISA method demonstrated a high degree of consistency, suggesting that the proposed CHA-assisted LoC-SERS device has satisfying accuracy. Thus, introducing the CHA strategy via the design of antibody-DNA conjugates opens new gates to ultra-sensitive and specific SERS detection of protein biomarkers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Antígeno Carcinoembrionario , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Neoplasias Pulmonares/diagnóstico , ADN , Tecnología
18.
Metabolites ; 12(10)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36295859

RESUMEN

Proanthocyanidins (PACs) have been proven to exert antioxidant and anti-inflammatory effects. In this study, ultra-performance liquid chromatography (UPLC) coupled with linear ion trap-Orbitrap (LTQ-Orbitrap) high-resolution mass spectrometry was first employed to systematically screen PACs from the roots of Ephedra sinica Stapf, and its ethyl acetate extract (ERE) was found to contain PAC monomers and A-type dimeric proanthocyanidins, which were tentatively identified through characteristic fragmentation patterns. In vitro, the antioxidant activity of ERE was tested through 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. In addition, ERE could inhibit the production of nitric oxide (NO) in lipopolysaccharide (LPS)-induced RAW 264.7 cells. In vivo, the preventative effects on dextran-sulfate-sodium-induced ulcerative colitis in mice was investigated. Mice were administered with ERE for 21 days, and during the last 7 days of the treatment period dextran sulfate sodium (DSS) was used to induce experimental colitis. The results showed that ERE treatment alleviated DSS-induced colitis, which was characterized by decreases in disease activity index (DAI) scores, spleen index and colon levels of TNF-α and IL-6, mitigation in pathological damage and oxidative stress and increases in colon length and IL-10 levels. In conclusion, supplementation of PACs derived from ERE may offer a new strategy for the treatment of ulcerative colitis. Moreover, our research will greatly facilitate better utilization of Ephedra plants.

19.
Int Immunopharmacol ; 109: 108907, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35691271

RESUMEN

BACKGROUND: Sepsis is a life-threateningorgandysfunction caused by the cytokine storm induced by the severe bacterial infection. Excessive inflammatory responses are responsible for the lethal organ damage during the early stage of sepsis. Helminth infection and helminth-derived proteins have been identified to have the ability to immunomodulate the host immune system by reducing inflammation against inflammatory diseases. Trichinella spiralis cystatin (Ts-Cys) is a cysteine protease inhibitor with strong immunomodulatory functions on host immune system. Our previous studies have shown that excretory-secretory proteins of T. spiralis reduced sepsis-induced inflammation and Ts-Cys was able to inhibit macrophages to produce inflammatory cytokines. Whether Ts-Cys has a therapeutic effect on polymicrobial sepsis and related immunological mechanism are not yet known. METHODS: Sepsis was induced in BALB/c mice using cecal ligation and puncture (CLP), followed by intraperitoneal injection of 15 µg recombinant Ts-Cys (rTs-Cys). The therapeutic effect of rTs-Cys on sepsis was evaluated by observing the 72-hour survival rates of CLP-induced septic mice and the acute injury of lung and kidney through measuring the wet/dry weight ratio of lung, the levels of blood urea nitrogen (BUN) and creatinine (Cr) in sera and the tissue section pathology. The potential underlying mechanism was investigated using mouse bone marrow-derived macrophages (BMDMs) by observing the effect of rTs-Cys on LPS-stimulated macrophage polarization. The expression of genes associated with macrophage polarization in BMDMs and tissues of septic mice was measured by Western Blotting and qPCR. RESULTS: In this study, we demonstrated the treatment with rTs-Cys alleviated CLP-induced sepsis in mice with significantly reduced pathological injury in vital organs of lung and kidney and reduced mortality of septic mice. The further study identified that treatment with rTs-Cys promoted macrophage polarization from classically activated macrophage (M1) to alternatively activated macrophage (M2) phenotype via inhibiting TLR2/MyD88 signal pathway and increasing expression of mannose receptor (MR), inhibited pro-inflammatory cytokines (TNF-α, IL-6 and IL-1ß) and increased regulatory anti-inflammatory cytokines (IL-10 and TGF-ß) in sera and tissues (lung and kidney) of mice with polymicrobial sepsis. CONCLUSIONS: Our results demonstrated that rTs-Cys had a therapeutic effect on sepsis through activating regulatory macrophages possibly via suppressing TLR2/MyD88 signal pathway. We also identified that rTs-Cys-induced M2 macrophage differentiation was associated with increased expression of MR on the surface of macrophages. Our results underscored the importance of MR in regulating macrophages during the treatment with rTs-Cys, providing another immunological mechanism in which helminths and their derived proteins modulate the host immune system. The findings in this study suggest that rTs-Cys is a potential therapeutic agent for the prevention and treatment of sepsis and other inflammatory diseases.


Asunto(s)
Cistatinas , Sepsis , Trichinella spiralis , Animales , Cistatinas/genética , Cistatinas/metabolismo , Cistatinas/uso terapéutico , Citocinas/metabolismo , Proteínas del Helminto , Inflamación , Macrófagos , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/microbiología , Receptor Toll-Like 2/metabolismo
20.
Anal Chim Acta ; 1236: 340574, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36396230

RESUMEN

Early and precise diagnosis of lung cancer is critical for a better prognosis. However, it is still a challenge to develop an effective strategy for early precisely diagnose and effective treatments. Here, we designed a label-free and highly accurate classification serum analytical platform for identifying mice with lung cancer. Specifically, the microarray chip integrated with Au nanostars (AuNSs) array was employed to measure the surface-enhanced Raman scattering (SERS) spectra of serum of tumor-bearing mice at different stages, and then a recognition model of SERS spectra was constructed using the principal component analysis (PCA)-representation coefficient-based k-nearest centroid neighbor (RCKNCN) algorithm. The microarray chip can realize rapid, sensitive, and high-throughput detection of SERS spectra of serum. RCKNCN based on the PCA-generated features successfully differentiated the SERS spectra of serum of tumor-bearing mice at different stages with a classification accuracy of 100%. The most prominent spectral features for distinguishing different stages were captured in PCs loading plots. This work not only provides a practical SERS chip for the application of SERS technology in cancer screening, but also provides a new idea for analyzing the feature of serum at the spectral level.


Asunto(s)
Neoplasias Pulmonares , Espectrometría Raman , Ratones , Animales , Espectrometría Raman/métodos , Análisis de Componente Principal , Neoplasias Pulmonares/diagnóstico , Análisis por Conglomerados , Detección Precoz del Cáncer
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA