Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 606(7914): 594-602, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35614224

RESUMEN

Only a small proportion of patients with cancer show lasting responses to immune checkpoint blockade (ICB)-based monotherapies. The RNA-editing enzyme ADAR1 is an emerging determinant of resistance to ICB therapy and prevents ICB responsiveness by repressing immunogenic double-stranded RNAs (dsRNAs), such as those arising from the dysregulated expression of endogenous retroviral elements (EREs)1-4. These dsRNAs trigger an interferon-dependent antitumour response by activating A-form dsRNA (A-RNA)-sensing proteins such as MDA-5 and PKR5. Here we show that ADAR1 also prevents the accrual of endogenous Z-form dsRNA elements (Z-RNAs), which were enriched in the 3' untranslated regions of interferon-stimulated mRNAs. Depletion or mutation of ADAR1 resulted in Z-RNA accumulation and activation of the Z-RNA sensor ZBP1, which culminated in RIPK3-mediated necroptosis. As no clinically viable ADAR1 inhibitors currently exist, we searched for a compound that can override the requirement for ADAR1 inhibition and directly activate ZBP1. We identified a small molecule, the curaxin CBL0137, which potently activates ZBP1 by triggering Z-DNA formation in cells. CBL0137 induced ZBP1-dependent necroptosis in cancer-associated fibroblasts and reversed ICB unresponsiveness in mouse models of melanoma. Collectively, these results demonstrate that ADAR1 represses endogenous Z-RNAs and identifies ZBP1-mediated necroptosis as a new determinant of tumour immunogenicity masked by ADAR1. Therapeutic activation of ZBP1-induced necroptosis provides a readily translatable avenue for rekindling the immune responsiveness of ICB-resistant human cancers.


Asunto(s)
Adenosina Desaminasa , Necroptosis , Neoplasias , Proteínas de Unión al ARN , Regiones no Traducidas 3' , Adenosina Desaminasa/metabolismo , Animales , Fibroblastos Asociados al Cáncer , Carbazoles/farmacología , Humanos , Inmunoterapia/tendencias , Interferones/metabolismo , Melanoma , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , ARN Bicatenario/inmunología , Proteínas de Unión al ARN/metabolismo
2.
Toxicol Mech Methods ; 31(5): 349-358, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33467949

RESUMEN

Smokeless tobacco products provide an alternative to cigarettes; however, smokeless tobacco is carcinogenic and harmful to human health. This study evaluated the toxicological effects of snus extracts and cigarette smoke total particulate matter (TPM) on human umbilical vein endothelial cells (HUVECs). Treated cells were examined for cell viability, reactive oxygen species (ROS), apoptosis, and inflammatory cytokines. Moreover, we explored the mechanism of programmed cell death induced by snus. The results showed that snus extracts significantly inhibited cell viability in a dose-dependent manner. ROS was significantly increased in treatment groups, and anti-oxidant treatment could not prevent snus extract-induced cell death. Snus extracts induced apoptosis, DNA damage, activation and cleavage of caspase-3 and caspase-8, pathway-related gene change, and interleukin (IL)-6 and IL-8 release in HUVECs. Snus extracts exposure may induce cytotoxicity, ROS generation, inflammatory cytokines release, and apoptosis or DNA damage through intrinsic and extrinsic pathways in HUVECs.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Tabaco sin Humo , Apoptosis , Supervivencia Celular , Citocinas/genética , Humanos , Especies Reactivas de Oxígeno , Tabaco sin Humo/toxicidad
3.
Toxicol Mech Methods ; 29(7): 499-510, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31050318

RESUMEN

The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is classified as a Group 1 human carcinogen. It is metabolically activated by P450 enzymes to intermediate methylate and pyridyloxobutylate DNA, resulting in the formation of DNA adduct that is critical for the carcinogenicity of NNK. To directly and objectively examine the DNA adduct formation profiles without the complexity of factors in vivo, in the present study, five kinds of methyl DNA adducts were first identified in the incubation model of NNK established with human lung epithelial cells (BEAS-2B). The level of methyl DNA adducts and metabolites of NNK were quantitatively analyzed, respectively. With the increase of exposure time and dose, the level of methyl DNA adducts and metabolites increased. Furthermore, with the changes of the activity of P450 enzymes, which is the main enzyme regulating the α-hydroxylation of NNK, we found the levels of both methyl adducts and metabolites formed via α-hydroxylation in experimental groups showed the same trend compared with those in control group, while the metabolites formed via other pathways changed in the opposite trend. The result proves that the methyl adducts induced by NNK generate via α-hydroxylation pathway in BEAS-2B cells.


Asunto(s)
Carcinógenos/toxicidad , Aductos de ADN/metabolismo , Metilación de ADN/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Pulmón/efectos de los fármacos , Nitrosaminas/toxicidad , Carcinógenos/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , Sistema Enzimático del Citocromo P-450 , Relación Dosis-Respuesta a Droga , Células Epiteliales/enzimología , Células Epiteliales/metabolismo , Humanos , Hidroxilación , Pulmón/enzimología , Pulmón/metabolismo , Nitrosaminas/metabolismo
4.
Development ; 141(22): 4332-42, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25371367

RESUMEN

Recently, emerging evidence has shown that Stat3 controls tumor cell migration and invasion. However, the molecular mechanisms by which Stat3 controls the cell movement remain largely unknown. Embryonic gastrula progenitors display coordinated and orientated migration, called collective cell migration. Collective cell migration is the simultaneous movement of multiple cells and is universally involved in physiological and pathological programs. Stat3 activity is required for the migration of gastrula progenitors, but it does not affect cell specification, thus suggesting that gastrula movements are an excellent model to provide insight into Stat3 control of cell migration in vivo. In this study, we reveal a novel mechanism by which Stat3 modulates extracellular matrix (ECM) assembly to control the coherence of collective migration of prechordal plate progenitors during zebrafish embryonic gastrulation. We show that Stat3 regulates the expression of Efemp2a in the prechordal plate progenitors that migrate anteriorly during gastrulation. Alteration of Stat3-Efemp2a signaling activity disrupted the configuration of fibronectin (FN) and laminin (LM) matrices, resulting in defective coherence of prechordal plate progenitor movements in zebrafish embryos. We demonstrate that Efemp2a acts as a downstream effector of Stat3 to promote ECM configuration for coherent collective cell migrations in vivo.


Asunto(s)
Movimiento Celular/fisiología , Endodermo/citología , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/fisiología , Gastrulación/fisiología , Factor de Transcripción STAT3/metabolismo , Células Madre/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Adenoviridae , Animales , Inmunoprecipitación de Cromatina , Clonación Molecular , Cartilla de ADN/genética , Perros , Proteínas de la Matriz Extracelular/genética , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Immunoblotting , Inmunoprecipitación , Hibridación in Situ , Células de Riñón Canino Madin Darby , Morfolinos/genética , Mutagénesis , Factor de Transcripción STAT3/genética , Imagen de Lapso de Tiempo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
5.
Front Immunol ; 14: 1241694, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771585

RESUMEN

The Zα domain has a compact α/ß architecture containing a three-helix bundle flanked on one side by a twisted antiparallel ß sheet. This domain displays a specific affinity for double-stranded nucleic acids that adopt a left-handed helical conformation. Currently, only three Zα-domain proteins have been identified in eukaryotes, specifically ADAR1, ZBP1, and PKZ. ADAR1 is a double-stranded RNA (dsRNA) binding protein that catalyzes the conversion of adenosine residues to inosine, resulting in changes in RNA structure, function, and expression. In addition to its editing function, ADAR1 has been shown to play a role in antiviral defense, gene regulation, and cellular differentiation. Dysregulation of ADAR1 expression and activity has been associated with various disease states, including cancer, autoimmune disorders, and neurological disorders. As a sensing molecule, ZBP1 exhibits the ability to recognize nucleic acids with a left-handed conformation. ZBP1 harbors a RIP homotypic interaction motif (RHIM), composed of a highly charged surface region and a leucine-rich hydrophobic core, enabling the formation of homotypic interactions between proteins with similar structure. Upon activation, ZBP1 initiates a downstream signaling cascade leading to programmed cell death, a process mediated by RIPK3 via the RHIM motif. PKZ was identified in fish, and contains two Zα domains at the N-terminus. PKZ is essential for normal growth and development and may contribute to the regulation of immune system function in fish. Interestingly, some pathogenic microorganisms also encode Zα domain proteins, such as, Vaccinia virus and Cyprinid Herpesvirus. Zα domain proteins derived from pathogenic microorganisms have been demonstrated to be pivotal contributors in impeding the host immune response and promoting virus replication and spread. This review focuses on the mammalian Zα domain proteins: ADAR1 and ZBP1, and thoroughly elucidates their functions in the immune response.


Asunto(s)
Ácidos Nucleicos , ARN Bicatenario , Animales , Inmunidad , Mamíferos
6.
Cell Death Discov ; 9(1): 176, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248230

RESUMEN

Sorafenib is the first FDA-approved first-line targeted drug for advanced HCC. However, resistance to sorafenib is frequently observed in clinical practice, and the molecular mechanism remains largely unknown. Here, we found that PLEKHG5 (pleckstrin homology and RhoGEF domain containing G5), a RhoGEF, was highly upregulated in sorafenib-resistant cells. PLEKHG5 overexpression activated Rac1/AKT/NF-κB signaling and reduced sensitivity to sorafenib in HCC cells, while knockdown of PLEKHG5 increased sorafenib sensitivity. The increased PLEKHG5 was related to its acetylation level and protein stability. Histone deacetylase 2 (HDAC2) was found to directly interact with PLEKHG5 to deacetylate its lysine sites within the PH domain and consequently maintain its stability. Moreover, knockout of HDAC2 (HDAC2 KO) or selective HDAC2 inhibition reduced PLEKHG5 protein levels and thereby enhanced the sensitivity of HCC to sorafenib in vitro and in vivo, while overexpression of PLEKHG5 in HDAC2 KO cells reduced the sensitivity to sorafenib. Our work showed a novel mechanism: HDAC2-mediated PLEKHG5 posttranslational modification maintains sorafenib resistance. This is a proof-of-concept study on targeting HDAC2 and PLEKHG5 in sorafenib-treated HCC patients as a new pharmaceutical intervention for advanced HCC.

7.
Open Biol ; 12(4): 210310, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35472288

RESUMEN

Cigarette smoke significantly induces oxidative stress, resulting in cardiovascular disease. NRF2, a well-known antioxidative stress response factor, is generally considered to play protective roles in cardiovascular dysfunction triggered by oxidative stress. Interestingly, recent studies reported adverse effects of NRF2 on the cardiovascular system. These unfavourable pathogenic effects of NRF2 need to be further investigated. Our work shows that cigarette smoke extract (CSE)-induced oxidative stress disturbs fibronectin (FN) assembly during angiogenesis. Furthermore, this effect largely depends on hyperactive NRF2-STAT3 signalling, which consequently promotes abnormal FN deposition. Consistently, disruption of this pathway by inhibiting NRF2 or STAT3 prevents CSE-induced FN disorganization and vasculature disruption in human umbilical vein endothelial cells or zebrafish. Taken together, these findings demonstrate the cardiovascular dysfunction caused by CSE from a novel perspective that NRF2-dependent signalling engages in FN disorganization.


Asunto(s)
Fumar Cigarrillos , Factor 2 Relacionado con NF-E2 , Animales , Células Endoteliales/metabolismo , Fibronectinas/metabolismo , Fibronectinas/farmacología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Nicotiana , Pez Cebra/metabolismo
8.
Toxicol Lett ; 316: 10-19, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31476341

RESUMEN

Rapid risk assessment models for different types of cigarette smoke extract (CSE) exposure are critical to understanding the etiology of chronic obstructive pulmonary disease. The present study investigated inflammation of cultured tracheal tissues with CSE exposure. Rat trachea rings were isolated, cultured, then exposed to various concentrations of CSE from 3R4 F reference cigarettes for 4 h. Tissue/cellular morphology, ultrastructure, viability and damage, inflammatory cell infiltration, and inflammatory protein levels were measured and compared to untreated controls. Human bronchial epithelial cells (BEAS-2B) exposed to 0 or 300 µg/mL CSE were cocultured with macrophages to assess extent of mobilization and phagocytosis. Endotracheal epithelium cilia densities were significantly reduced with increasing CSE concentrations, while mucous membranes became increasingly disordered; both eventually disappeared. Macrophages became larger as the CSE concentration increased, with microvilli and extended pseudopodium covering their surface, and many primary and secondary lysosomes present in the cytoplasm. Inflammatory cell infiltration also increased with increasing CSE dose, as did intracellular adhesion molecule-1(ICAM-1), interleukin-6(IL-6). The method described here may be useful to qualitatively characterized the effects of the compound under study. Then, we use BEAS-2B cell line system to strength the observation made in the cultured tissues. Probably, an approach to integrate results from both experiments will facilitate its application. These results demonstrate that cultured rat tracheal rings have a whole-tissue structure that undergoes inflammatory processes similar to in vivo tissues upon CSE exposure.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Macrófagos/efectos de los fármacos , Nicotiana/efectos adversos , Enfermedad Pulmonar Obstructiva Crónica/etiología , Humo/efectos adversos , Fumar/efectos adversos , Tráquea/efectos de los fármacos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Humanos , Mediadores de Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Macrófagos/ultraestructura , Masculino , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Ratas Sprague-Dawley , Medición de Riesgo , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Tráquea/metabolismo , Tráquea/ultraestructura
9.
Sci Rep ; 6: 25300, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27143125

RESUMEN

Syndecan-4 (Syn4), a single-pass transmembrane heparin sulphate proteoglycan (HSPG), plays significant role in the formation of focal adhesions and interacts with many growth factors to regulate cell migration and neural induction. Here, we show the new roles of syndecan-4(syn4) in zebrafish embryonic neurogenesis. Syn4 is broadly and dynamically expressed throughout the early stages of embryonic development. Knockdown of syn4 increases the expression of the marker genes of multiple types of neural cells. The increased expression of the marker genes is resulted from excessive proliferation of the neural cells. In addition, disrupting syn4 expression results in truncated and multiple aberrant branching of caudal primary (CaP) axons. Collectively, these data indicate that Syn4 suppresses the cellular proliferation during neurogenesis and is crucial for the formation of CaP axons during zebrafish embryogenesis.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Neurogénesis , Neuronas/fisiología , Sindecano-4/metabolismo , Pez Cebra/embriología , Animales , Expresión Génica , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Sindecano-4/genética
10.
Sci Rep ; 4: 4470, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24667151

RESUMEN

The Snail family member snail encodes a zinc finger-containing transcriptional factor that is involved in heart formation. Yet, little is known about how Snail regulates heart development. Here, we identified that one of the duplicated snail genes, snai1b, was expressed in the heart region of zebrafish embryos. Depletion of Snai1b function dramatically reduced expression of α5 integrin, disrupted Fibronectin layer in the heart region, especially at the midline, and prevented migration of cardiac precursors, resulting in defects in cardiac morphology and function in zebrafish embryos. Injection of α5ß1 protein rescued the Fibronectin layer and then the myocardial precursor migration in snai1b knockdown embryos. The results provide the molecular mechanism how Snail controls the morphogenesis of heart during embryonic development.


Asunto(s)
Desarrollo Embrionario , Fibronectinas/metabolismo , Integrina alfa5/metabolismo , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Animales , Movimiento Celular/genética , Embrión no Mamífero , Fibronectinas/genética , Corazón/crecimiento & desarrollo , Integrina alfa5/genética , Morfogénesis/genética , Miocardio/citología , Factores de Transcripción de la Familia Snail , Factores de Transcripción/antagonistas & inhibidores , Pez Cebra , Proteínas de Pez Cebra/antagonistas & inhibidores
11.
Sci Rep ; 4: 5831, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-25060222

RESUMEN

Normal interfollicular epidermis (IFE) homeostasis is maintained throughout the entire life by its own stem cells that self-renew and generate progeny that undergo terminal differentiation. However, the fine markers of the stem cells in interfollicular epidermis are not well defined yet. Here we found that TLR7 identified the existence of progenitors and interfollicular epidermal stem cells in murine skin. In vitro, TLR7-expressing cells comprised of two subpopulations that were competent to proliferate and exhibited distinct differentiation potentials. Three-dimensional (3D) organotypic culture and skin reconstitution assays showed that TLR7-expressing cells were able to reconstruct the interfollicular epidermis. Finally, TLR7-expressing cells maintained the intact interfollicular epidermal structures revealed in serial transplantation assays in vivo in mice. Taken together, our results suggest that TLR7-expressing cells comprise an interfollicular epidermal stem cell population.


Asunto(s)
Células Epidérmicas , Células Madre/citología , Receptor Toll-Like 7/metabolismo , Aminoquinolinas/farmacología , Animales , Técnicas de Cultivo de Célula , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Epidermis/metabolismo , Epidermis/patología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Folículo Piloso/metabolismo , Imiquimod , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Queratinocitos/trasplante , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Regeneración , Piel/metabolismo , Piel/patología , Trasplante de Células Madre , Células Madre/metabolismo , Ingeniería de Tejidos , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 7/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA