Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Soc Rev ; 53(3): 1552-1591, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38168798

RESUMEN

Urea is one of the most essential reactive nitrogen species in the nitrogen cycle and plays an indispensable role in the water-energy-food nexus. However, untreated urea or urine wastewater causes severe environmental pollution and threatens human health. Electrocatalytic and photo(electro)catalytic urea oxidation technologies under mild conditions have become promising methods for energy recovery and environmental remediation. An in-depth understanding of the reaction mechanisms of the urea oxidation reaction (UOR) is important to design efficient electrocatalysts/photo(electro)catalysts for these technologies. This review provides a critical appraisal of the recent advances in the UOR by means of both electrocatalysis and photo(electro)catalysis, aiming to comprehensively assess this emerging field from fundamentals and materials, to practical applications. The emphasis of this review is on the design and development strategies for electrocatalysts/photo(electro)catalysts based on reaction pathways. Meanwhile, the UOR in natural urine is discussed, focusing on the influence of impurity ions. A particular emphasis is placed on the application of the UOR in energy and environmental fields, such as hydrogen production by urea electrolysis, urea fuel cells, and urea/urine wastewater remediation. Finally, future directions, prospects, and remaining challenges are discussed for this emerging research field. This critical review significantly increases the understanding of current progress in urea conversion and the development of a sustainable nitrogen economy.

2.
Chem Soc Rev ; 53(9): 4312-4332, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38596903

RESUMEN

Aqueous zinc (Zn) batteries have attracted global attention for energy storage. Despite significant progress in advancing Zn anode materials, there has been little progress in cathodes. The predominant cathodes working with Zn2+/H+ intercalation, however, exhibit drawbacks, including a high Zn2+ diffusion energy barrier, pH fluctuation(s) and limited reproducibility. Beyond Zn2+ intercalation, alternative working principles have been reported that broaden cathode options, including conversion, hybrid, anion insertion and deposition/dissolution. In this review, we report a critical assessment of non-intercalation-type cathode materials in aqueous Zn batteries, and identify strengths and weaknesses of these cathodes in small-scale batteries, together with current strategies to boost material performance. We assess the technical gap(s) in transitioning these cathodes from laboratory-scale research to industrial-scale battery applications. We conclude that S, I2 and Br2 electrodes exhibit practically promising commercial prospects, and future research is directed to optimizing cathodes. Findings will be useful for researchers and manufacturers in advancing cathodes for aqueous Zn batteries beyond Zn2+ intercalation.

3.
Chem Soc Rev ; 53(4): 2022-2055, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38204405

RESUMEN

Beyond conventional electrocatalyst engineering, recent studies have unveiled the effectiveness of manipulating the local reaction environment in enhancing the performance of electrocatalytic reactions. The general principles and strategies of local environmental engineering for different electrocatalytic processes have been extensively investigated. This review provides a critical appraisal of the recent advancements in local reaction environment engineering, aiming to comprehensively assess this emerging field. It presents the interactions among surface structure, ions distribution and local electric field in relation to the local reaction environment. Useful protocols such as the interfacial reactant concentration, mass transport rate, adsorption/desorption behaviors, and binding energy are in-depth discussed toward modifying the local reaction environment. Meanwhile, electrode physical structures and reaction cell configurations are viable optimization methods in engineering local reaction environments. In combination with operando investigation techniques, we conclude that rational modifications of the local reaction environment can significantly enhance various electrocatalytic processes by optimizing the thermodynamic and kinetic properties of the reaction interface. We also outline future research directions to attain a comprehensive understanding and effective modulation of the local reaction environment.

4.
J Am Chem Soc ; 146(2): 1619-1626, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38166387

RESUMEN

Operation of rechargeable batteries at ultralow temperature is a significant practical problem because of poor kinetics of the electrode. Here, we report for the first time stabilized multiphase conversions for fast kinetics and long-term durability in ultralow-temperature, organic-sodium batteries. We establish that disodium rhodizonate organic electrode in conjunction with single-layer graphene oxide obviates consumption of organic radical intermediates, and demonstrate as a result that the newly designed organic electrode exhibits excellent electrochemical performance of a highly significant capacity of 130 mAh g-1 at -50 °C. We evidence that the full-cell configuration coupled with Prussian blue analogues exhibits exceptional cycling stability of >7000 cycles at -40 °C while maintaining a discharge capacity of 101 mAh g-1 at a high current density 300 mA g-1. We show this is among the best reported ultralow-temperature performance for nonaqueous batteries, and importantly, the pouch cell exhibits a continuous power supply despite conditions of -50 °C. This work sheds light on the distinct energy storage characteristics of organic electrode and opens up new avenues for the development of reliable and sustainable ultralow-temperature batteries.

5.
J Am Chem Soc ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840442

RESUMEN

Aqueous zinc batteries are practically promising for large-scale energy storage because of cost-effectiveness and safety. However, application is limited because of an absence of economical electrolytes to stabilize both the cathode and anode. Here, we report a facile method for advanced zinc-iodine batteries via addition of a trace imidazolium-based additive to a cost-effective zinc sulfate electrolyte, which bonds with polyiodides to boost anti-self-discharge performance and cycling stability. Additive aggregation at the cathode improves the rate capacity by boosting the I2 conversion kinetics. Also, the introduced additive enhances the reversibility of the zinc anode by adjusting Zn2+ deposition. The zinc-iodine pouch cell, therefore, exhibits industrial-level performance evidenced by a ∼99.98% Coulombic efficiency under ca. 0.4C, a significantly low self-discharge rate with 11.7% capacity loss per month, a long lifespan with 88.3% of initial capacity after 5000 cycles at a 68.3% zinc depth-of-discharge, and fast-charging of ca. 6.7C at a high active-mass loading >15 mg cm-2. Highly significant is that this self-discharge surpasses commercial nickel-metal hydride batteries and is comparable with commercial lead-acid batteries, together with the fact that the lifespan is over 10 times greater than reported works, and the fast-charging performance is better than commercial lithium-ion batteries.

6.
Opt Lett ; 49(3): 466-469, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300036

RESUMEN

With the increasing complexity of the electromagnetic environment, there is a growing demand for the manipulation of electromagnetic waves, leading to the rapid development in configurable microwave absorbers. All-dielectric absorbers offer broadband and high-intensity absorption effects in microwave absorption and shielding. However, they face a significant challenge: their performance is not adjustable once the design is completed. In this study, we propose a solution to this problem by creating all-dielectric absorbers with flexibly configurable absorbing properties. We achieve this by designing a composite material of ionogels/nano-graphite sheets into compressible deformable absorbing units that can be molded into different shapes using 3D printing modes. The plasticity allows us to change the performance of the all-dielectric absorber, including the microwave absorption intensity, absorption peak, frequency bandwidths, and wide-angle absorption performance. With this approach, we can flexibly manipulate electromagnetic waves using all-dielectric absorbers through different plasticity models.

7.
Clin Oral Implants Res ; 35(6): 598-608, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38517053

RESUMEN

OBJECTIVES: To systematically analyze the accuracy of robotic surgery for dental implant placement. MATERIALS AND METHODS: PubMed, Embase, and Cochrane CENTRAL were searched on October 25, 2023. Model studies or clinical studies reporting the accuracy of robotic surgery for dental implant placement among patients with missing or hopeless teeth were included. Risks of bias in clinical studies were assessed. Meta-analyses were undertaken. RESULTS: Data from 8 clinical studies reporting on 109 patients and 242 implants and 13 preclinical studies were included. Positional accuracy was measured by comparing the implant plan in presurgery CBCT and the actual implant position in postsurgery CBCT. For clinical studies, the pooled (95% confidence interval) platform deviation, apex deviation, and angular deviation were 0.68 (0.57, 0.79) mm, 0.67 (0.58, 0.75) mm, and 1.69 (1.25, 2.12)°, respectively. There was no statistically significant difference between the accuracy of implants placed in partially or fully edentulous patients. For model studies, the pooled platform deviation, apex deviation, and angular deviation were 0.72 (0.58, 0.86) mm, 0.90 (0.74, 1.06) mm, and 1.46 (1.22, 1.70)°, respectively. No adverse event was reported. CONCLUSION: Within the limitation of the present systematic review, robotic surgery for dental implant placement showed suitable implant positional accuracy and had no reported obvious harm. Both robotic systems and clinical studies on robotic surgery for dental implant placement should be further developed.


Asunto(s)
Implantación Dental Endoósea , Implantes Dentales , Procedimientos Quirúrgicos Robotizados , Humanos , Procedimientos Quirúrgicos Robotizados/métodos , Implantación Dental Endoósea/métodos , Tomografía Computarizada de Haz Cónico
8.
Chem Soc Rev ; 52(22): 7802-7847, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37869994

RESUMEN

To support the global goal of carbon neutrality, numerous efforts have been devoted to the advancement of electrochemical energy conversion (EEC) and electrochemical energy storage (EES) technologies. For these technologies, transition metal dichalcogenide/carbon (TMDC/C) heterostructures have emerged as promising candidates for both electrode materials and electrocatalysts over the past decade, due to their complementary advantages. It is worth noting that interfacial properties play a crucial role in establishing the overall electrochemical characteristics of TMDC/C heterostructures. However, despite the significant scientific contribution in this area, a systematic understanding of TMDC/C heterostructures' interfacial engineering is currently lacking. This literature review aims to focus on three types of interfacial engineering, namely interfacial orientation engineering, interfacial stacking engineering, and interfacial doping engineering, of TMDC/C heterostructures for their potential applications in EES and EEC devices. To accomplish this goal, a combination of experimental and theoretical approaches was used to allow the analysis and summary of the fundamental electrochemical properties and preparation strategies of TMDC/C heterostructures. Moreover, this review highlights the design and utilization of the interfacial engineering of TMDC/C heterostructures for specific EES and EEC devices. Finally, the challenges and opportunities of using interfacial engineering of TMDC/C heterostructures in practical EES and EEC devices are outlined. We expect that this review will effectively guide readers in their understanding, design, and application of interfacial engineering of TMDC/C heterostructures.

9.
J Am Chem Soc ; 145(9): 5384-5392, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36809916

RESUMEN

Sulfur-based aqueous zinc batteries (SZBs) attract increasing interest due to their integrated high capacity, competitive energy density, and low cost. However, the hardly reported anodic polarization seriously deteriorates the lifespan and energy density of SZBs at a high current density. Here, we develop an integrated acid-assisted confined self-assembly method (ACSA) to elaborate a two-dimensional (2D) mesoporous zincophilic sieve (2DZS) as the kinetic interface. The as-prepared 2DZS interface presents a unique 2D nanosheet morphology with abundant zincophilic sites, hydrophobic properties, and small-sized mesopores. Therefore, the 2DZS interface plays a bifunctional role in reducing the nucleation and plateau overpotential: (a) accelerating the Zn2+ diffusion kinetics through the opened zincophilic channels and (b) inhibiting the kinetic competition of hydrogen evolution and dendrite growth via the significant solvation-sheath sieving effect. Therefore, the anodic polarization is reduced to 48 mV at 20 mA cm-2, and the full-battery polarization is reduced to 42% of an unmodified SZB. As a result, an ultrahigh energy density of 866 Wh kgsulfur-1 at 1 A g-1 and a long lifespan of 10,000 cycles at a high rate of 8 A g-1 are achieved.

10.
J Am Chem Soc ; 145(28): 15565-15571, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37395649

RESUMEN

Ethylene oxidation to oxygenates via electrocatalysis is practically promising because of less energy input and CO2 output compared with traditional thermal catalysis. However, current ethylene electrooxidation reaction (EOR) is limited to alkaline and neutral electrolytes to produce acetaldehyde and ethylene glycol, significantly limiting cell energy efficiency. Here, we report for the first time an EOR to 2-chloroethanol product in a strongly acidic environment with natural seawater as an electrolyte. We demonstrate a 2-chloroethanol Faradaic efficiency (FE) of ∼70% with a low electrical energy consumption of ∼1.52 × 10-3 kWh g-1 over a commercial Pd catalyst. We establish a mechanism to evidence that 2-chloroethanol is produced at low potentials via direct interaction of adsorbed chloride anions (*Cl) with ethylene reactant because of the high coverage of *Cl during reaction. Importantly, this differs from the accepted multiple step mechanism of subsequent chlorine oxidation and ethylene chlorination reactions at high potentials. With highly active Cl- participation, the production rate for 2-chloroethanol in acidic seawater is a high 26.3 g m-2 h-1 at 1.6 V operation. Significantly, we show that this is 223 times greater than that for ethylene glycol generation in acidic freshwater. We demonstrate chloride-participated EOR in a proton exchange membrane electrolyzer that exhibits a 68% FE for 2-chloroethanol at 2.2 V operation in acidic seawater. This new understanding can be used for designing selective anode oxidation reactions in seawater under mild conditions.

11.
J Am Chem Soc ; 145(28): 15572-15580, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37409766

RESUMEN

Electrochemical coupling between carbon and nitrogen species to generate high-value C-N products, including urea, presents significant economic and environmental potentials for addressing the energy crisis. However, this electrocatalysis process still suffers from limited mechanism understanding due to the complex reaction networks, which restricts the development of electrocatalysts beyond trial-and-error practices. In this work, we aim to improve the understanding of the C-N coupling mechanism. This goal was achieved by constructing the activity and selectivity landscape on 54 MXene surfaces by density functional theory (DFT) calculations. Our results show that the activity of the C-N coupling step is largely determined by the *CO adsorption strength (Ead-CO), while the selectivity relies more on the co-adsorption strength of *N and *CO (Ead-CO and Ead-N). Based on these findings, we propose that an ideal C-N coupling MXene catalyst should satisfy moderate *CO and stable *N adsorption. Through the machine learning-based approach, data-driven formulas for describing the relationship between Ead-CO and Ead-N with atomic physical chemistry features were further identified. Based on the identified formula, 162 MXene materials were screened without time-consuming DFT calculations. Several potential catalysts were predicted with good C-N coupling performance, such as Ta2W2C3. The candidate was then verified by DFT calculations. This study has incorporated machine learning methods for the first time to provide an efficient high-throughput screening method for selective C-N coupling electrocatalysts, which could be extended to a wider range of electrocatalytic reactions to facilitate green chemical production.

12.
J Am Chem Soc ; 145(26): 14335-14344, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37342888

RESUMEN

Design for highly selective catalysts for CO2 electroreduction to multicarbon (C2+) fuels is pressing and important. There is, however, presently a poor understanding of selectivity toward C2+ species. Here we report for the first time a method of judiciously combined quantum chemical computations, artificial-intelligence (AI) clustering, and experiment for development of a model for the relationship between C2+ product selectivity and composition of oxidized Cu-based catalysts. We 1) evidence that the oxidized Cu surface more significantly facilitates C-C coupling, 2) confirm the critical potential condition(s) for this oxidation state under different metal doping components via ab initio thermodynamics computation, 3) establish an inverted-volcano relationship between experimental Faradaic efficiency and critical potential using multidimensional scaling (MDS) results based on physical properties of dopant elements, and 4) demonstrate design for electrocatalysts to selectively generate C2+ product(s) through a co-doping strategy of early and late transition metals. We conclude that a combination of theoretical computation, AI clustering, and experiment can be used to practically establish relationships between descriptors and selectivity for complex reactions. Findings will benefit researchers in designing electroreduction conversions of CO2 to multicarbon C2+ products.

13.
J Am Chem Soc ; 145(11): 6410-6419, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36913199

RESUMEN

Sustainable conversion of plastic waste to mitigate environmental threats and reclaim waste value is important. Ambient-condition photoreforming is practically attractive to convert waste to hydrogen (H2); however, it has poor performance because of mutual constraint between proton reduction and substrate oxidation. Here, we realize a cooperative photoredox using defect-rich chalcogenide nanosheet-coupled photocatalysts, e.g., d-NiPS3/CdS, to give an ultrahigh H2 evolution of ∼40 mmol gcat-1 h-1 and organic acid yield up to 78 µmol within 9 h, together with excellent stability beyond 100 h in photoreforming of commercial waste plastic poly(lactic acid) and poly(ethylene terephthalate). Significantly, these metrics represent one of the most efficient plastic photoreforming reported. In situ ultrafast spectroscopic studies confirm a charge transfer-mediated reaction mechanism in which d-NiPS3 rapidly extracts electrons from CdS to boost H2 evolution, favoring hole-dominated substrate oxidation to improve overall efficiency. This work opens practical avenues for converting plastic waste into fuels and chemicals.

14.
Biochem Biophys Res Commun ; 681: 232-241, 2023 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-37788590

RESUMEN

Inflammation is implicated in the development of diabetic complications including vascular pathology. Centrosome is known to play a role in cell secretion. We have reported that diabetes can trigger centrosome amplification (CA). Thus, in the present study, we investigated the relationship between CA and the release of proinflammatory cytokines interleukin-1ß, tumor necrosis factor-α and interleukin-6 in hCMEC/D3 human endothelial cells treated with advanced glycation end products (AGEs). We found that AGEs induced CA via PLK4 and increased the biosynthesis of the three cytokines via NF-κB. Importantly, treatment of the cells with AGEs also increased the release of the three cytokines. Inhibiting CA by knockdown of polo like kinase 4 (PLK4) attenuated the cytokine release but not their biosynthesis. Knockdown of the cytokines inhibited the CA, while addition of the cytokines individually to the cell culture increased the protein level of PLK4 and CA to a moderate level. Addition of the three cytokines together into the cell culture markedly enhanced the CA, to a level higher than that in the AGEs-treated group. In conclusion, our results provide the direct evidence that the cytokines can induce CA, and suggest that there is a mutual promoting cycle between CA and cytokine release in the treated samples. It is proposed that the cycle of CA-cytokine release is a candidate biological link between diabetes and its complications such as vascular pathologies.


Asunto(s)
Citocinas , Diabetes Mellitus , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Células Endoteliales/metabolismo , FN-kappa B/metabolismo , Centrosoma/metabolismo , Proteínas Serina-Treonina Quinasas
15.
Small ; 19(45): e2303428, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37434078

RESUMEN

Obtaining partial methane oxidation reaction (MOR) with various oxygenates via a mild electrochemical method is practically difficult because of activation of stable C─H bond and consequent reaction pathway regulation. Here, a real-time tandem MOR with cascaded plasma and electrocatalysis to activate and convert the methane (CH4 ) synergistically is reported for the first time. Boosted CH4 conversion is demonstrated toward value-added products including, alcohols, carboxylates, and ketone via use of commercial Pd-based electrocatalysts. Compared with hash industrial processes, a mild condition, that is, anode potential < 1.0 V versus RHE (reversible hydrogen electrode) is used that mitigates overoxidation of oxygenates and obviates competing reaction(s). One evidence that Pd(II) sites and surface adsorbed hydroxyls are important in facilitating activated-CH4 species conversion, and establish a reaction mechanism for conversion(s) that involves coupling reactions between adsorbed hydroxyls, carbon monoxide and C1 /C2 alkyls. One conclude that pre-activation is important in boosting electrochemical partial MOR under mild conditions and will be of benefit in the development of sustainable CH4 conversion technology.

16.
Clin Oral Implants Res ; 34(8): 839-849, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37309242

RESUMEN

OBJECTIVES: Multiple generations of medical robots have revolutionized surgery. Their application to dental implants is still in its infancy. Co-operating robots (cobots) have great potential to improve the accuracy of implant placement, overcoming the limitations of static and dynamic navigation. This study reports the accuracy of robot-assisted dental implant placement in a preclinical model and further applies the robotic system in a clinical case series. MATERIALS AND METHODS: In model analyses, the use of a lock-on structure at robot arm-handpiece was tested in resin arch models. In a clinical case series, patients with single missing teeth or edentulous arch were included. Robot-assisted implant placement was performed. Surgery time was recorded. Implant platform deviation, apex deviation, and angular deviation were measured. Factors influencing implant accuracy were analyzed. RESULTS: The in vitro results showed that with a lock-on structure, the mean (SD) of platform deviation, apex deviation, and angular deviation were 0.37 (0.14) mm, 0.44 (0.17) mm, and 0.75 (0.29)°, respectively. Twenty-one patients (28 implants) were included in the clinical case series, 2 with arches and 19 with single missing teeth. The median surgery time for single missing teeth was 23 (IQ range 20-25) min. The surgery time for the two edentulous arches was 47 and 70 min. The mean (SD) of platform deviation, apex deviation, and angular deviation was 0.54 (0.17) mm, 0.54 (0.11) mm, and 0.79 (0.22)° for single missing teeth and for 0.53 (0.17) mm, 0.58 (0.17) mm, and 0.77 (0.26)° for an edentulous arch. Implants placed in the mandible had significantly larger apex deviation than those in the maxilla. CONCLUSION: Cobot-assisted dental implant placement showed excellent positional accuracy and safety in both the in vitro study and the clinical case series. More technological development and clinical research are needed to support the introduction of robotic surgery in oral implantology. Trial registered in ChiCTR2100050885.


Asunto(s)
Implantes Dentales , Boca Edéntula , Robótica , Cirugía Asistida por Computador , Pérdida de Diente , Humanos , Diseño Asistido por Computadora , Tomografía Computarizada de Haz Cónico , Implantación Dental Endoósea/métodos , Tecnología Háptica , Imagenología Tridimensional , Boca Edéntula/cirugía , Cirugía Asistida por Computador/métodos
17.
Molecules ; 29(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38202657

RESUMEN

Increased glycolysis is a key characteristic of malignant cells that contributes to their high proliferation rates and ability to develop drug resistance. The glycolysis rate-limiting enzyme hexokinase II (HK II) is overexpressed in most tumor cells and significantly affects tumor development. This paper examines the structure of HK II and the specific biological factors that influence its role in tumor development, as well as the potential of HK II inhibitors in antitumor therapy. Furthermore, we identify and discuss the inhibitors of HK II that have been reported in the literature.


Asunto(s)
Hexoquinasa , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Glucólisis
18.
Angew Chem Int Ed Engl ; 62(9): e202216383, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36509704

RESUMEN

The design of heterogeneous catalysts is necessarily surface-focused, generally achieved via optimization of adsorption energy and microkinetic modelling. A prerequisite is to ensure the adsorption energy is physically meaningful is the stable existence of the conceived active-site structure on the surface. The development of improved understanding of the catalyst surface, however, is challenging practically because of the complex nature of dynamic surface formation and evolution under in-situ reactions. We propose therefore data-driven machine-learning (ML) approaches as a solution. In this Minireview we summarize recent progress in using machine-learning to search and predict (meta)stable structures, assist operando simulation under reaction conditions and micro-environments, and critically analyze experimental characterization data. We conclude that ML will become the new norm to lower costs associated with discovery and design of optimal heterogeneous catalysts.

19.
Angew Chem Int Ed Engl ; 62(17): e202301570, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36850048

RESUMEN

Zn electrodes in aqueous media exhibit an unstable Zn/electrolyte interface due to severe parasitic reactions and dendrite formation. Here, a dynamic Zn interface modulation based on the molecular switch strategy is reported by hiring γ-butyrolactone (GBL) in ZnCl2 /H2 O electrolyte. During Zn plating, the increased interfacial alkalinity triggers molecular switch from GBL to γ-hydroxybutyrate (GHB). GHB strongly anchors on Zn surface via triple Zn-O bonding, leading to suppressive hydrogen evolution and texture-regulated Zn morphology. Upon Zn stripping, the fluctuant pH turns the molecular switch reaction off through the cyclization of GHB to GBL. This dynamic molecular switch strategy enables high Zn reversibility with Coulombic efficiency of 99.8 % and Zn||iodine batteries with high-cyclability under high Zn depth of discharge (50 %). This study demonstrates the importance of dynamic modulation for Zn electrode and realizes the reversible molecular switch strategy to enhance its reversibility.

20.
Angew Chem Int Ed Engl ; 62(39): e202310284, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37548518

RESUMEN

As a burgeoning electrolyte system, eutectic electrolytes based on ZnCl2 /Zn(CF3 SO3 )2 /Zn(TFSI)2 have been widely proposed in advanced Zn-I2 batteries; however, safety and cost concerns significantly limit their applications. Here, we report new-type ZnSO4 -based eutectic electrolytes that are both safe and cost-effective. Their universality is evident in various solvents of polyhydric alcohols, in which multiple -OH groups not only involve in Zn2+ solvation but also interact with water, resulting in the high stability of electrolytes. Taking propylene glycol-based hydrated eutectic electrolyte as an example, it features significant advantages in non-flammability and low price that is <1/200 cost of Zn(CF3 SO3 )2 /Zn(TFSI)2 -based eutectic electrolytes. Moreover, its effectiveness in confining the shuttle effects of I2 cathode and side reactions of Zn anodes is evidenced, resulting in Zn-I2 cells with high reversibility at 1 C and 91.4 % capacity remaining under 20 C. After scaling up to the pouch cell with a record mass loading of 33.3 mg cm-2 , super-high-capacity retention of 96.7 % is achieved after 500 cycles, which exceeds other aqueous counterparts. This work significantly broadens the eutectic electrolyte family for advanced Zn battery design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA