Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(1): 848-856, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175104

RESUMEN

A high-sensitive photoacoustic spectroscopy (PAS) sensor, which is based on a multi-pass-retro-reflection-enhanced differential Helmholtz photoacoustic cell (DHPAC) and a high power diode laser amplified by erbium-doped fiber amplifier (EDFA), is presented in this work for the first time. In order to improve the interaction length between the light and target gas, the incident light was reflected four times through a multi-pass-retro-reflection-cell constructed by two right-angle prisms. A 1.53 µm distributed feedback (DFB) diode laser was selected to excite photoacoustic signal. Moreover, its power was amplified by an EDFA to 1000 mW to improve the amplitude of photoacoustic signal. Acetylene (C2H2) was chosen as the target analysis to verify the reported sensor performance. Compared to double channel without multiple reflections, the 2f signal of double channel with four reflections was improved by 3.71 times. In addition, when the output optical power of EDFA was 1000 mW, the 2f signal has a 70.57-fold improvement compared with the multi-pass-retro-reflection-cell without EDFA. An Allan deviation analysis was carried out to evaluate the long-term stability of such PAS sensor. When the averaging time was 400 s, the minimum detection limit (MDL) of such PAS sensor was 14 ppb.

2.
Opt Express ; 32(1): 379-386, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175068

RESUMEN

A novel dual-frequency modulated heterodyne quartz-enhanced photoacoustic spectroscopy (DFH-QEPAS) was demonstrated for what we believe to be the first time in this study. In traditional H-QEPAS, the frequency of modulated sinusoidal wave has a frequency difference (Δf) with the resonance frequency (f0) of a quartz tuning fork (QTF). Owing to the resonance characteristic of QTF, it cannot excite QTF to the strongest response. To achieve a stronger response, a sinusoidal wave with a frequency of f0 was added to the modulation wave to compose a dual-frequency modulation. Acetylene (C2H2) was chosen as the target gas to verify the sensor performance. The proposed DFH-QEPAS improved 4.05 times of signal-to-noise ratio (SNR) compared with the traditional H-QEPAS in the same environmental conditions.

3.
Opt Lett ; 49(3): 770-773, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300111

RESUMEN

In this Letter, two novel, to the best of our knowledge, quartz tuning forks (QTFs) with trapezoidal-head and round-head were designed and adopted for quartz-enhanced photoacoustic spectroscopy (QEPAS) sensing. Based on finite element analysis, a theoretical simulation model was established to optimize the design of QTF. For performance comparison, a reported T-head QTF and a commercial QTF were also investigated. The designed QTFs have decreased resonant frequency (f0) and increased gap between the two prongs of QTF. The experimentally determined f0 of the T-head QTF, trapezoidal-head QTF, and round-head QTF were 8690.69 Hz, 9471.67 Hz, and 9499.28 Hz, respectively. The corresponding quality (Q) factors were measured as 11,142, 11,411, and 11,874. Compared to the commercial QTF, the resonance frequencies of these QTFs have reduced by 73.45%, 71.07%, and 70.99% while maintaining a comparable Q factor to the commercially mature QTF. Methane (CH4) was chosen as the analyte to verify the QTFs' performance. Compared with the commercial QTF, the signal-to-noise ratio (SNR) of the CH4-QEPAS system based on the T-head QTF, trapezoidal-head QTF, and round-head QTF has been improved by 1.75 times, 2.96 times, and 3.26 times, respectively. The performance of the CH4-QEPAS sensor based on the QTF with the best performance of the round-head QTF was investigated in detail. The results indicated that the CH4-QEPAS sensor based on the round-head QTF exhibited an excellent linear concentration response. Furthermore, a minimum detection limit (MDL) of 0.87 ppm can be achieved when the system's average time was 1200 s.

4.
Opt Lett ; 49(10): 2765-2768, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748156

RESUMEN

In this Letter, a quasi-distributed quartz enhanced photoacoustic spectroscopy (QEPAS) gas sensing system based on hollow waveguide micropores (HWGMP) was reported for the first time, to the best of our knowledge. Three micropores were developed on the HWG to achieve distributed detection units. Three self-designed quartz tuning forks (QTFs) with low resonant frequency of 8.7 kHz were selected as the acoustic wave transducer to improve the detection performance. Compared with micro-nano fiber evanescent wave (FEW) QEPAS, the HWGMP-QEPAS sensor has advantages such as strong anti-interference ability, low loss, and low cost. Acetylene (C2H2) was selected as the target gas to verify the characteristics of the reported sensor. The experimental results showed that the three QTFs almost had the same sensing ability and possessed an excellent linear concentration response to C2H2. The minimum detection limits (MDLs) for the three QTFs were determined as 68.90, 68.31, and 66.62 ppm, respectively. Allan deviation analysis indicated that the system had good long-term stability, and the MDL can be improved below 3 ppm in an average time of 1000 s.

5.
Opt Lett ; 48(19): 5089-5092, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37773392

RESUMEN

In this Letter, a differential integrating sphere-based photoacoustic spectroscopy (PAS) gas sensor is proposed for the first time to our knowledge. The differential integrating sphere system consists of two integrating spheres and a tube. Based on differential characteristics, the photoacoustic signal of the designed differential integrating sphere was doubly enhanced and the noise was suppressed. Compared with a single channel integrating sphere, the differential integrating sphere sensing system had a 1.86 times improvement in signal level. An erbium-doped fiber amplifier (EDFA) was adopted to amplify the output of diode laser to enhance the optical excitation. The second harmonic (2f) signal of differential integrating sphere-based acetylene (C2H2) PAS sensor with an amplified 1000 mW optical output power was 104.67 mV, which was 22.80 times improved compared to the sensing system without EDFA. When the integration time was 100 s, the minimum detection limit (MDL) of the differential integrating sphere-based C2H2 PAS sensor was 416.7 ppb. The differential integrating sphere provides a new method, to the best of our knowledge, for the development of PAS sensor, which has the advantages of photoacoustic signal enhancement, strong noise immunity, and no need for optical adjustment.

6.
Opt Lett ; 48(15): 3989-3992, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527100

RESUMEN

In this Letter, a hollow waveguide (HWG)-based light-induced thermoelastic spectroscopy (LITES) gas sensing is proposed. An HWG with a length of 65 cm and inner diameter of 4 mm was used as the light transmission medium and gas chamber. The inner wall of the HWG was coated with a silver (Ag) film to improve reflectivity. Compared with the usually used multi-pass cell (MPC), the HWG has many advantages, such as small size, simple structure and fast filling. Compared with a hollow-core anti-resonant fiber (HC-ARF), the HWG has the merits of easy optical coupling, high system stability, and wide transmission range. A diode laser with output wavelength of 1.53 µm and a quantum cascade laser (QCL) with output wavelength of 4.58 µm were selected as the sources of excitation to target acetylene (C2H2) and carbon monoxide (CO), respectively, to verify the performance of the HWG-based LITES sensor in the near-infrared and mid-infrared regions. The experimental results showed that the HWG-based LITES sensor had a great linear responsiveness to the target gas concentration. The minimum detection limit (MDL) for C2H2 and CO was 6.07 ppm and 98.66 ppb, respectively.

7.
Opt Lett ; 48(2): 419-422, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638472

RESUMEN

In this Letter, a sensitive light-induced thermoelastic spectroscopy (LITES)-based trace gas sensor by exploiting a super tiny quartz tuning fork (QTF) was demonstrated. The prong length and width of this QTF are 3500 µm and 90 µm, respectively, which determines a resonant frequency of 6.5 kHz. The low resonant frequency is beneficial to increase the energy accumulation time in a LITES sensor. The geometric dimension of QTF on the micrometer scale is advantageous to obtain a great thermal expansion and thus can produce a strong piezoelectric signal. The temperature gradient distribution of the super tiny QTF was simulated based on the finite element analysis and is higher than that of the commercial QTF with 32.768 kHz. Acetylene (C2H2) was used as the analyte. Under the same conditions, the use of the super tiny QTF achieved a 1.64-times signal improvement compared with the commercial QTF. The system shows excellent long-term stability according to the Allan deviation analysis, and a minimum detection limit (MDL) would reach 190 ppb with an integration time of 220 s.

8.
Sensors (Basel) ; 23(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37112375

RESUMEN

In this invited paper, a highly sensitive methane (CH4) trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) technique using a high-power diode laser and a miniaturized 3D-printed acoustic detection unit (ADU) is demonstrated for the first time. A high-power diode laser emitting at 6057.10 cm-1 (1650.96 nm), with the optical power up to 38 mW, was selected as the excitation source to provide a strong excitation. A 3D-printed ADU, including the optical and photoacoustic detection elements, had a dimension of 42 mm, 27 mm, and 8 mm in length, width, and height, respectively. The total weight of this 3D-printed ADU, including all elements, was 6 g. A quartz tuning fork (QTF) with a resonant frequency and Q factor of 32.749 kHz and 10,598, respectively, was used as an acoustic transducer. The performance of the high-power diode laser-based CH4-QEPAS sensor, with 3D-printed ADU, was investigated in detail. The optimum laser wavelength modulation depth was found to be 0.302 cm-1. The concentration response of this CH4-QEPAS sensor was researched when the CH4 gas sample, with different concentration samples, was adopted. The obtained results showed that this CH4-QEPAS sensor had an outstanding linear concentration response. The minimum detection limit (MDL) was found to be 14.93 ppm. The normalized noise equivalent absorption (NNEA) coefficient was obtained as 2.20 × 10-7 cm-1W/Hz-1/2. A highly sensitive CH4-QEPAS sensor, with a small volume and light weight of ADU, is advantageous for the real applications. It can be portable and carried on some platforms, such as an unmanned aerial vehicle (UAV) and a balloon.

9.
Opt Express ; 30(2): 1304-1313, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209293

RESUMEN

In this manuscript, a highly sensitive methane (CH4) sensor based on light-induced thermoelastic spectroscopy (LITES) using a 2.33 µm diode laser with high power is demonstrated for the first time. A quartz tuning fork (QTF) with an intrinsic resonance frequency of 32.768 kHz was used to detect the light-induced thermoelastic signal. A Herriot multi-pass cell with an effective optical path of 10 m was adopted to increase the laser absorption. The laser wavelength modulation depth and concentration response of this CH4-LITES sensor were investigated. The sensor showed excellent long term stability when Allan deviation analysis was performed. An adaptive Savitzky-Golay (S-G) filtering algorithm with χ2 statistical criterion was firstly introduced to the LITES technique. The SNR of this CH4-LITES sensor was improved by a factor of 2.35 and the minimum detection limit (MDL) with an integration time of 0.1 s was optimized to 0.5 ppm. This reported CH4-LITES sensor with sub ppm-level detection ability is of great value in applications such as environmental monitoring and industrial safety.

10.
Opt Express ; 30(11): 18836-18844, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36221675

RESUMEN

In this paper, a hollow-core anti-resonant fiber (HC-ARF) based light-induced thermoelastic spectroscopy (LITES) sensor is reported. A custom-made silica-based HC-ARF with length of 75 cm was used as light medium and gas cell. Compared to a traditional multi-pass cell (MPC), the using of HC-ARF is advantageous for reducing the sensor size and easing the optical alignment. A quartz tuning fork (QTF) with a resonant frequency of 32766.20 Hz and quality factor of 12364.20 was adopted as the thermoelastic detector. Acetylene (C2H2) and carbon monoxide (CO) with absorption lines located at 6534.37 cm-1 (1530.37 nm) and 6380.30 cm-1 (1567.32 nm) were chosen as the target gas to verify such HC-ARF based LITES sensor performance. It was found that this HC-ARF based LITES sensor exhibits excellent linearity response to the analyte concentrations. The minimum detection limit (MDL) for C2H2 and CO detections were measured as 4.75 ppm and 1704 ppm, respectively. The MDL for such HC-ARF based LITES sensor can be further improved by using a HC-ARF with long length or choosing an absorption line with strong strength.

11.
Opt Lett ; 47(6): 1295-1298, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35290297

RESUMEN

An acoustic microresonator (AmR) based in-plane quartz-enhanced photoacoustic spectroscopy (IP-QEPAS) sensor with a line interaction mode is proposed for what is believed to be the first time. The interaction area for the acoustic wave of the proposed AmR, with a slotted sidewall, is not limited to a point of the quartz tuning fork (QTF) prongs, but extends along the whole plane of the QTF prongs. Sixteen types of AmRs are designed to identify the best parameters. Water vapor (H2O) is chosen as the analyte to verify the reported method. The results indicate that this AmR for IP-QEPAS with a line interaction mode not only provides a high signal level, but also reduces the thermal noise caused by the laser directly illuminating the QTF. Compared with standard IP-QEPAS without an AmR, the minimum detection limit (MDL) is improved by 4.11 times with the use of the technique proposed in this study.

12.
Opt Lett ; 47(3): 601-604, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35103686

RESUMEN

An H-shaped acoustic micro-resonator (AmR)-based quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor is demonstrated for the first time. The H-shaped AmR has the advantages of easy optical alignment, high utilization of laser energy, and reduction in optical noise. The parameter of the H-shaped AmR is designed based on the standing wave enhancement characteristic. The performance of the H-shaped AmR-based QEPAS sensor system and bare quartz tuning fork (QTF)-based sensor system are measured under the same conditions by choosing water vapor (H2O) as the target gas. Compared with the QEAPS sensor based on a bare QTF, the detection sensitivity of the optimal H-shaped AmR-based QEPAS sensor exhibits a 17.2 times enhancement.

13.
Sensors (Basel) ; 22(14)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35890763

RESUMEN

Oxygen (O2) is a colorless and odorless substance, and is the most important gas in human life and industrial production. In this invited paper, a highly sensitive O2 sensor based on reflector-enhanced photoacoustic spectroscopy (PAS) is reported for the first time. A diode laser emitting at 760 nm was used as the excitation source. The diode laser beam was reflected by the adopted reflector to pass thorough the photoacoustic cell twice and further increase the optical absorption. With such enhanced absorption strategy, compared with the PAS system without the reflector, the reflector-enhanced O2-PAS sensor system had 1.85 times the signal improvement. The minimum detection limit (MDL) of such a reflector-enhanced O2-PAS sensor was experimentally determined to be 0.54%. The concentration response of this sensor was investigated when O2 with a different concentration was used. The obtained results showed it has an excellent linear concentration response. The system stability was analyzed by using Allan variance, which indicated that the MDL for such a reflector-enhanced O2-PAS sensor could be improved to 318 ppm when the integration time of this sensor system is 1560 s. Finally, the O2 concentration on the outside was continuously monitored for 24 h, indicated that this reflector-enhanced O2-PAS sensor system has an excellent measurement ability for actual applications in environmental monitoring, medical diagnostics, and other fields.


Asunto(s)
Monitoreo del Ambiente , Oxígeno , Monitoreo del Ambiente/métodos , Humanos , Oxígeno/análisis , Análisis Espectral/métodos
14.
Sensors (Basel) ; 22(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35161782

RESUMEN

For this invited manuscript, an in-plane single-quartz-enhanced dual spectroscopy (IP-SQEDS)-based trace gas sensor was demonstrated for the first time. A single quartz tuning fork (QTF) was employed to combine in-plane quartz-enhanced photoacoustic spectroscopy (IP-QEPAS) with light-induced thermoelastic spectroscopy (LITES) techniques. Water vapor (H2O) was chosen as the target gas. Compared to traditional QEPAS, IP-SQEDS not only allowed for simple structures, but also obtained nearly three times signal amplitude enhancement.


Asunto(s)
Técnicas Fotoacústicas , Cuarzo , Análisis Espectral
15.
Opt Express ; 29(16): 25100-25108, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614848

RESUMEN

In this paper, we report on an ultra-highly sensitive light-induced thermoelastic spectroscopy (LITES)-based carbon monoxide (CO) sensor exploiting custom quartz tuning forks (QTFs) as a photodetector, a multi-pass cell and a mid-infrared quantum cascade laser (QCL) for the first time. The QCL emitting at 4.58 µm with output power of 145 mW was employed as exciting source and the multi-pass cell was employed to increase the gas absorption pathlength. To reduce the noise level, wavelength modulation spectroscopy (WMS) and second harmonic demodulation techniques were exploited. Three QTFs including two custom QTFs (#1 and #2) with different geometries and a commercial standard QTF (#3) were tested as photodetector in the gas sensor. When the integration time of the system was set at 200 ms, minimum detection limits (MDLs) of 750 part-per-trillion (ppt), 4.6 part-per-billion (ppb) and 5.8 ppb were achieved employing QTF #1 #2, and #3, respectively. A full sensor calibration was achieved using the most sensitive QTF#1, demonstrating an excellent linear response with CO concentration.

16.
Opt Express ; 29(4): 5121-5127, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33726053

RESUMEN

A trace gas detection technique of quartz-enhanced photoacoustic-photothermal spectroscopy (QEPA-PTS) is demonstrated. Different from quartz-enhanced photoacoustic spectroscopy (QEPAS) or quartz-enhanced photothermal spectroscopy (QEPTS), which detected only one single kind of signal, QEPA-PTS was realized by adding the photoacoustic and photothermal signals generated from two quartz tuning forks (QTFs), respectively. Water vapor (H2O) with a volume concentration of 1.01% was selected as the analyte gas to investigate the QEPA-PTS sensor performance. Compared to QEPAS and QEPTS, an enhanced signal level was achieved for this QEPA-PTS system. Further improvement of such a technique was proposed.

17.
Opt Lett ; 46(10): 2449-2452, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33988607

RESUMEN

A single-quartz-enhanced dual spectroscopy (S-QEDS)-based trace gas sensor is reported for the first time, to the best of our knowledge. In S-QEDS, a quartz tuning fork (QTF) was utilized to detect the photoacoustic and photothermal signals simultaneously and added the two signals together. The S-QEDS technique not only improved the detection performance but also avoided the issue of resonant frequency mismatching of QTFs for the multi-QTFs-based sensor systems. Water vapor (${\rm H}_2{\rm O}$) was selected as the target gas to investigate the S-QEDS sensor performance. The photoacoustic, photothermal, and composited signals were measured, respectively, under the same conditions. The experimental results verified the ideal adding of the photoacoustic and photothermal signals by using a single QTF in this S-QEDS sensor system.

18.
Opt Lett ; 46(5): 977-980, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649635

RESUMEN

A multi-pass quartz-enhanced photoacoustic spectroscopy (MP-QEPAS)-based trace gas sensor is reported. In MP-QEPAS, a multi-pass laser beam pattern through the prong spacing of a quartz tuning fork (QTF) is obtained by means of two right-angle prisms. A large QTF with the prong length of 17 mm and prong spacing of 0.8 mm was employed to increase the passage of multi-pass time and ease the alignment of the beam reflection pattern through the QTF. This multi-pass configuration allows the laser beam to pass through the QTF prong spacing six times. Water vapor (H2O) was chosen as target gas to investigate the performance of the MP-QEPAS sensor. Compared to a conventional QEPAS measurement, the MP-QEPAS technique provided an enhancement of signal level of ∼3.2 times.

19.
Sensors (Basel) ; 21(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065442

RESUMEN

Combining the merits of non-contact measurement and high sensitivity, the quartz-enhanced photothermal spectroscopy (QEPTS) technique is suitable for measuring acid gases such as hydrogen chloride (HCl). In this invited paper, we report, for the first time, on an ultra-highly sensitive HCl sensor based on the QEPTS technique. A continuous wave, distributed feedback (CW-DFB) fiber-coupled diode laser with emission wavelength of 1.74 µm was used as the excitation source. A certified mixture of 500 ppm HCl:N2 was adapted as the analyte. Wavelength modulation spectroscopy was used to simplify the data processing. The wavelength modulation depth was optimized. The relationships between the second harmonic (2f) amplitude of HCl-QEPTS signal and the laser power as well as HCl concentration were investigated. An Allan variance analysis was performed to prove that this sensor had good stability and high sensitivity. The proposed HCl-QEPTS sensor can achieve a minimum detection limit (MDL) of ~17 parts per billion (ppb) with an integration time of 130 s. Further improvement of such an HCl-QEPTS sensor performance was proposed.

20.
Opt Express ; 27(10): 14163-14172, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31163869

RESUMEN

In this paper, a multi-pass retro-reflection-cavity-enhanced photoacoustic spectroscopy (PAS) based gas sensor is reported for the first time. The multi-pass retro-reflection-cavity consisted of two right-angle prisms and was designed to reflect the laser beam to pass through the photoacoustic (PA) cell four times, which improved the acetylene (C2H2)-PAS sensor signal level significantly. The optical power of a near-infrared distributed feedback (DFB) diode laser emitting a continuous wave (CW) was amplified to 1000 mW with an erbium-doped fiber amplifier. The background noise was reduced with wavelength modulation spectroscopy (WMS) and 2nd harmonic demodulation techniques. The linear optical power and concentration response of such a PAS sensor were investigated, and the experimental results showed excellent characteristics. When the integration the time of the sensor system was set to 1 s, the minimum detection limit (MDL) for C2H2 detection was 8.17 ppb, which corresponds to a normalized noise equivalent absorption coefficient (NNEA) of 1.84 × 10-8 cm-1W/√Hz. The long-term stability of such a multi-pass retro-reflection-cavity-enhanced PAS based C2H2 sensor was evaluated by an Allan deviation analysis. It was demonstrated that the multi-pass retro-reflection-cavity-enhanced PAS sensor had an excellent stability. An MDL of 600 ppt was achieved when the integration time was set to ~1000 s. It was verified that the method of multi-pass retro-reflection-cavity-enhanced PAS with an amplified laser source improved the sensor performance significantly. If an appropriate cavity design with increasing reflection times is used, the MDL of such a PAS-based sensor can be further improved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA