Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063070

RESUMEN

Plastid retrograde signaling plays a key role in coordinating the expression of plastid genes and photosynthesis-associated nuclear genes (PhANGs). Although plastid retrograde signaling can be substantially compromised by mitochondrial dysfunction, it is not yet clear whether specific mitochondrial factors are required to regulate plastid retrograde signaling. Here, we show that mitochondrial ATP synthase beta-subunit mutants with decreased ATP synthase activity are impaired in plastid retrograde signaling in Arabidopsis thaliana. Transcriptome analysis revealed that the expression levels of PhANGs were significantly higher in the mutants affected in the AT5G08670 gene encoding the mitochondrial ATP synthase beta-subunit, compared to wild-type (WT) seedlings when treated with lincomycin (LIN) or norflurazon (NF). Further studies indicated that the expression of nuclear genes involved in chloroplast and mitochondrial retrograde signaling was affected in the AT5G08670 mutant seedlings treated with LIN. These changes might be linked to the modulation of some transcription factors (TFs), such as LHY (Late Elongated Hypocotyl), PIF (Phytochrome-Interacting Factors), MYB, WRKY, and AP2/ERF (Ethylene Responsive Factors). These findings suggest that the activity of mitochondrial ATP synthase significantly influences plastid retrograde signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , ATPasas de Translocación de Protón Mitocondriales , Plastidios , Transducción de Señal , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Plastidios/metabolismo , Plastidios/genética , Mitocondrias/metabolismo , Plantones/genética , Plantones/metabolismo , Mutación , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Lincomicina/farmacología , Perfilación de la Expresión Génica
2.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473801

RESUMEN

Epidermal cells are the main avenue for signal and material exchange between plants and the environment. Leaf epidermal cells primarily include pavement cells, guard cells, and trichome cells. The development and distribution of different epidermal cells are tightly regulated by a complex transcriptional regulatory network mediated by phytohormones, including jasmonic acid, and transcription factors. How the fate of leaf epidermal cells is determined, however, is still largely unknown due to the diversity of cell types and the complexity of their regulation. Here, we characterized the transcriptional profiles of epidermal cells in 3-day-old true leaves of Arabidopsis thaliana using single-cell RNA sequencing. We identified two genes encoding BASIC LEUCINE-ZIPPER (bZIP) transcription factors, namely bZIP25 and bZIP53, which are highly expressed in pavement cells and early-stage meristemoid cells. Densities of pavement cells and trichome cells were found to increase and decrease, respectively, in bzip25 and bzip53 mutants, compared with wild-type plants. This trend was more pronounced in the presence of jasmonic acid, suggesting that these transcription factors regulate the development of trichome cells and pavement cells in response to jasmonic acid.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ciclopentanos , Oxilipinas , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Células Epidérmicas , Factores de Transcripción , Hojas de la Planta , Tricomas , Análisis de Secuencia de ARN , Regulación de la Expresión Génica de las Plantas
3.
Plant J ; 112(1): 27-37, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35904970

RESUMEN

The recent and continuous improvement in single-cell RNA sequencing (scRNA-seq) technology has led to its emergence as an efficient experimental approach in plant research. However, compared with single-cell research in animals and humans, the application of scRNA-seq in plant research is limited by several challenges, including cell separation, cell type annotation, cellular function analysis, and cell-cell communication networks. In addition, the unavailability of corresponding reliable and stable analysis methods and standards has resulted in the relative decentralization of plant single-cell research. Considering these shortcomings, this review summarizes the research progress in plant leaf using scRNA-seq. In addition, it describes the corresponding feasible analytical methods and associated difficulties and problems encountered in the current research. In the end, we provide a speculative overview of the development of plant single-cell transcriptome research in the future.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Animales , Perfilación de la Expresión Génica/métodos , Humanos , Hojas de la Planta/genética , Proyectos de Investigación , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma/genética
4.
Plant J ; 110(1): 7-22, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35218590

RESUMEN

The leaf veins of higher plants contain a highly specialized vascular system comprised of xylem and phloem cells that transport water, organic compounds and mineral nutrients. The development of the vascular system is controlled by phytohormones that interact with complex transcriptional regulatory networks. Before the emergence of true leaves, the cotyledons of young seedlings perform photosynthesis that provides energy for the sustainable growth and survival of seedlings. However, the mechanisms underlying the early development of leaf veins in cotyledons are still not fully understood, in part due to the complex cellular composition of this tissue. To better understand the development of leaf veins, we analyzed 14 117 single cells from 3-day-old cotyledons using single-cell RNA sequencing. Based on gene expression patterns, we identified 10 clusters of cells and traced their developmental trajectories. We discovered multiple new marker genes and developmental features of leaf veins. The transcription factor networks of some cell types indicated potential roles of CYCLING DOF FACTOR 5 (CDF5) and REPRESSOR OF GA (RGA) in the early development and function of the leaf veins in cotyledons. These new findings lay a foundation for understanding the early developmental dynamics of cotyledon veins. The mechanisms underlying the early development of leaf veins in cotyledons are still not fully understood. In this study, we comprehensively characterized the early differentiation and development of leaf veins in 3-day-old cotyledons based on single-cell transcriptome analysis. We identified the cell types and novel marker genes of leaf veins and characterized the novel regulators of leaf vein.


Asunto(s)
Cotiledón , Regulación de la Expresión Génica de las Plantas , Regulación de la Expresión Génica de las Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , ARN/metabolismo , Plantones
5.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35562888

RESUMEN

In recent years, advances in single-cell RNA sequencing (scRNA-seq) technologies have continued to change our views on biological systems by increasing the spatiotemporal resolution of our analysis to single-cell resolution. Application of scRNA-seq to plants enables the comprehensive characterization of both common and rare cell types and cell states, uncovering new cell types and revealing how cell types relate to each other spatially and developmentally. This review provides an overview of scRNA-seq methodologies, highlights the application of scRNA-seq in plant science, justifies why scRNA-seq is a master player of sequencing, and explains the role of single-cell transcriptomics technologies in environmental stress adaptation, alongside the challenges and prospects of single-cell transcriptomics. Collectively, we put forward a central role of single-cell sequencing in plant research.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Perfilación de la Expresión Génica/métodos , Plantas/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Secuenciación del Exoma
6.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269904

RESUMEN

As sessile organisms, plants constantly face challenges from the external environment. In order to meet these challenges and survive, plants have evolved a set of sophisticated adaptation strategies, including changes in leaf morphology and epidermal cell development. These developmental patterns are regulated by both light and hormonal signaling pathways. However, our mechanistic understanding of the role of these signaling pathways in regulating plant response to environmental stress is still very limited. By applying single-cell RNA-Seq, we determined the expression pattern of PHYTOCHROME INTERACTING FACTOR (PIF) 1, PIF3, PIF4, and PIF5 genes in leaf epidermal pavement cells (PCs) and guard cells (GCs). PCs and GCs are very sensitive to environmental stress, and our previous research suggests that these PIFs may be involved in regulating the development of PCs, GCs, and leaf morphology under environmental stress. Growth analysis showed that pif1/3/4/5 quadruple mutant maintained tolerance to drought and salt stress, and the length to width ratio of leaves and petiole length under normal growth conditions were similar to those of wild-type (WT) plants under drought and salt treatment. Analysis of the developmental patterns of PCs and GCs, and whole leaf morphology, further confirmed that these PIFs may be involved in mediating the development of epidermal cells under drought and salt stress, likely by regulating the expression of MUTE and TOO MANY MOUTHS (TMM) genes. These results provide new insights into the molecular mechanism of plant adaptation to adverse growth environments.


Asunto(s)
Proteínas de Arabidopsis , Sequías , Proteínas de Arabidopsis/genética , Epidermis/metabolismo , Regulación de la Expresión Génica de las Plantas , RNA-Seq , Estrés Salino , Estrés Fisiológico/genética
7.
J Econ Entomol ; 106(1): 215-20, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23448034

RESUMEN

Glenea cantor (F.) is a cerambycid species that attacks living trees of at least seven plant families in Asia, and has the potential to become an invasive pest. Here we investigated its reproductive biology in the laboratory to provide vital information for the development of pest control measures and preparation of pest risk analysis. Both sexes required a period of maturation feeding before mating, with the mean premating period of males (5.87 +/- 1.68 d) being significantly longer than that of females (4.59 +/- 2.34 d). This was a synovigenic species with the mean preoviposition and oviposition period being 13.50 +/- 3.15 d and 49.46 +/- 16.16 d, respectively. If no food was available after emergence, adult males died before reaching sexual maturation and females vanished before oviposition. Paired couples mated an average of 15.12 +/- 7.02 times; 28- to 53-d-old beetles mated significantly more frequently than younger and older ones. The mean fecundity was 133.24 +/- 9.67 eggs. The oviposition rate significantly increased in the first 5 wk of the oviposition period, peaking when females were 40- to 54-d-old, and then significantly decreased in the following weeks. Reproductive activities occurred almost exclusively during the day, with most ovipositions taking place in the morning and matings in the afternoon with some overlaps.


Asunto(s)
Escarabajos/fisiología , Longevidad , Oviposición , Maduración Sexual , Animales , Ritmo Circadiano , Femenino , Privación de Alimentos , Masculino , Inanición
8.
Front Plant Sci ; 14: 1136636, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063185

RESUMEN

Cotton is one of the major cash crops globally. It is characterized by determinate growth and multiple fruiting, which makes the source-sink contradiction more obvious. Coordination between source and sink is crucial for normal growth, yield, and quality of cotton. Numerous studies reported how the assimilate transport and distribution under varying environmental cues affected crop yields. However, less is known about the functional mechanism underlying the assimilate transport between source and sink, and how their distribution impacts cotton growth. Here, we provided an overview of the assimilate transport and distribution mechanisms , and discussed the regulatory mechanisms involved in source-sink balance in relation to cotton yield. Therefore, this review enriched our knowledge of the regulatory mechanism involved in source-sink relationship for improved cotton yield.

9.
Plant Environ Interact ; 4(1): 36-54, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37284598

RESUMEN

Through crosstalk, FLAGELLIN SENSITIVE 2 (FLS2) and RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) are involved in regulating the homeostasis of cellular reactive oxygen species (ROS) and are linked to the metabolic response of plants toward both biotic and abiotic stress. In the present study, we examined the metabolome of Arabidopsis seedlings under drought and salt conditions to better understand the potential role of FLS2 and RBOHD-dependent signaling in the regulation of abiotic stress response. We identified common metabolites and genes that are regulated by FLS2 and RBOHD, and are involved in the response to drought and salt stress. Under drought conditions, D-aspartic acid and the expression of associated genes, such as ASPARAGINE SYNTHASE 2 (ASN2), increased in both fls2 and robed/f double mutants. The accumulation of amino acids, carbohydrates, and hormones, such as L-proline, D-ribose, and indoleacetaldehyde increased in both fls2 and rbohd/f double mutants under salt conditions, as did the expression of related genes, such as PROLINE IMINOPEPTIDASE, PHOSPHORIBOSYL PYROPHOSPHATE SYNTHASE 5, and NITRILASE 3. Collectively, these results indicate that the FLS2-RBOHD module regulates plant response to drought and salt stress through ROS signaling by adjusting the accumulation of metabolites and expression of genes related to metabolite synthesis.

10.
Biochem Biophys Rep ; 30: 101228, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35243011

RESUMEN

Cotton (Gossypium spp.) is one of the most important cash crops worldwide. At present, new cotton varieties are mainly produced through conventional cross breeding, which is limited by available germplasm. Although the genome of cotton has been fully sequenced, research on the function of specific genes lags behind due to the lack of sufficient genetic material. Therefore, it is very important to create a cotton mutant library to create new, higher-quality varieties and identify genes associated with the regulation of key traits. Traditional mutagenic strategies, such as physical, chemical, and site-directed mutagenesis, are relatively costly, inefficient, and difficult to perform. In this study, we used a radiation mutation method based on linear electron acceleration to mutate cotton variety 'TM-1', for which a whole-genome sequence has previously been performed, to create a high throughput cotton mutant library. Abundant phenotypic variation was observed in the progeny population for three consecutive generations, including cotton fiber color variation, plant dwarfing, significant improvement of yield traits, and increased sensitivity to Verticillium wilt. These results show that radiation mutagenesis is an effective and feasible method to create plant mutant libraries.

11.
Front Plant Sci ; 13: 1043204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466268

RESUMEN

Over the course of evolution, plants have developed plasticity to acclimate to environmental stresses such as drought and salt stress. These plant adaptation measures involve the activation of cascades of molecular networks involved in stress perception, signal transduction and the expression of stress related genes. Here, we investigated the role of the plasma membrane-localized transporter of auxin PINFORMED1 (PIN1) in the regulation of pavement cells (PCs) and guard cells (GCs) development under drought and salt stress conditions. The results showed that drought and salt stress treatment affected the development of PCs and GCs. Further analysis identified the different regulation mechanisms of PIN1 in regulating the developmental patterns of PCs and GCs under drought and salt stress conditions. Drought and salt stress also regulated the expression dynamics of PIN1 in pif1/3/4/5 quadruple mutants. Collectively, we revealed that PIN1 plays a crucial role in regulating plant epidermal cells development under drought and salt stress conditions, thus contributing to developmental rebustness and plasticity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA