Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(4): e1012141, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38626263

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus etiologically associated with multiple malignancies. Both latency and sporadic lytic reactivation contribute to KSHV-associated malignancies, however, the specific roles of many KSHV lytic gene products in KSHV replication remain elusive. In this study, we report that ablation of ORF55, a late gene encoding a tegument protein, does not impact KSHV lytic reactivation but significantly reduces the production of progeny virions. We found that cysteine 10 and 11 (C10 and C11) of pORF55 are palmitoylated, and the palmytoilation is essential for its Golgi localization and secondary envelope formation. Palmitoylation-defective pORF55 mutants are unstable and undergo proteasomal degradation. Notably, introduction of a putative Golgi localization sequence to these palmitoylation-defective pORF55 mutants restores Golgi localization and fully reinstates KSHV progeny virion production. Together, our study provides new insight into the critical role of pORF55 palmitoylation in KSHV progeny virion production and offers potential therapeutic targets for the treatment of related malignancies.


Asunto(s)
Aparato de Golgi , Herpesvirus Humano 8 , Lipoilación , Proteínas Virales , Virión , Replicación Viral , Herpesvirus Humano 8/fisiología , Herpesvirus Humano 8/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/virología , Humanos , Virión/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Replicación Viral/fisiología , Células HEK293
2.
Environ Toxicol ; 39(4): 1951-1967, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38069587

RESUMEN

Breast cancer poses a significant risk to women worldwide, yet specific role of SERPINA gene family in breast cancer remains unclarified. Data were collected from online databases. SERPINA family gene expression was presented, and prognosis value was evaluated. Multi-omics methods were employed to explore the SERPINA-related biological processes, followed by comprehensive analyses of their roles in breast cancer. Single-cell data were analyzed to characterize the SERPINA family gene expression in different cell clusters. We selected SERPINA5 as the target gene. Via pan-cancer analysis, SERPINA5 was also investigated in various cancers. The experimental validation was conducted in MDA-MB-231 cell line eventually. SERPINA family showed differential expression in breast cancer, which were mainly expressed in myeloid cells, epithelial cells, and dendritic cells. SERPINA5 expression was upregulated in breast cancer, which was associated with a better prognosis. Immune infiltration illustrated the positive correlativity between SERPINA5 intensity and eosinophilic recruitment. Pan-cancer analysis indicated the function of SERPINA5 as a potential biomarker in other cancers. Finally, experimental validation demonstrated that SERPINA5 contributes to lower invasion and metastatic potential of breast cancer cells. With bioinformatics analysis, the significant role SERPINA family genes functioned in breast cancer was comprehensively explored, with SERPINA5 emerging as a key gene in suppressing breast cancer progression.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/genética , Pronóstico , Transcriptoma , Células Epiteliales
3.
Environ Toxicol ; 39(2): 882-889, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37927217

RESUMEN

Alpha-2-glycoprotein 1, zinc-binding (AZGP1) is a secreted protein, which has been shown to be a potential biomarker of cancer progression; however, its roles in breast cancer are still unclear. Currently, we analyzed the online datasets and found that AZGP1 was highly expressed in breast cancer tissues and its expression was negatively correlated with the survival of breast cancer patients. Functional experiments through AZGP1 knockdown revealed that AZGP1 could promote the proliferation, migration, and invasion ability of breast cancer cells. In vivo experiments obtained a consistent result. Mechanistically, it was found that AZGP1 interacted with tripartite motif-containing protein 25 (TRIM25), which subsequently promoted AZGP1 degradation through facilitating the ubiquitination. Furthermore, overexpression of TRIM25 partially reversed the promoting effects of AZGP1 overexpression on breast cancer progression. Therefore, this study indicates that AZGP1 might be a potential therapeutic target for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Adipoquinas , Glicoproteínas/metabolismo , Proteínas de Motivos Tripartitos/genética , Factores de Transcripción , Ubiquitina-Proteína Ligasas/genética , Zn-alfa-2-Glicoproteína
4.
Environ Toxicol ; 39(3): 1429-1441, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37987512

RESUMEN

Cisplatin, a potent chemotherapy agent, is highly effective against various cancers but is hindered by resistance and toxicities. This study aims to investigate the roles of SLC7A11, a cystine/glutamate transporter, in cisplatin resistance, and explored Tanshinone IIA as a therapeutic option. Cisplatin reduced SLC7A11 in renal cells, worsening toxicity. Cisplatin-resistant gastric cancer cells show increased SLC7A11, driving resistance, while SLC7A11 knockdown curbed resistance. Tanshinone IIA showed promise in alleviating cisplatin toxicity by enhancing SLC7A11 expression and reducing associated adverse effects, while it effectively reversed cisplatin resistance in gastric cancer cells by suppressing SLC7A11. Additionally, Tanshinone IIA counteracted cisplatin resistance by inhibiting PIAS4-mediated SUMOylation of SLC7A11. Simultaneously, overexpressing miR-375, which has been shown to target SLC7A11, exacerbated cisplatin toxicity via SLC7A11 downregulation, which Tanshinone IIA attenuates. In summary, our study unveils complex SLC7A11 regulation in cisplatin resistance and toxicity. Tanshinone IIA emerges as a promising modulator of SLC7A11 through individual pathways, offering novel insights into overcoming cisplatin resistance and reducing toxicities in cancer therapy.


Asunto(s)
Cisplatino , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Línea Celular Tumoral , Abietanos/farmacología , Sistema de Transporte de Aminoácidos y+
5.
Environ Toxicol ; 39(3): 1505-1520, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37994574

RESUMEN

Cytochrome P450 (CYP) 4Z1 (CYP4Z1) has recently garnered much interest as its expression predicts a poor prognosis and as a oncogene in breast cancer, and overexpressed in other many cancers. We previously showed that CYP4Z1 acts as a promoter of cancer stem cells (CSCs) to facilitate the occurrence and development of breast cancer. Here, RNA sequencing found that 1-benzylimidazole (1-Benzy) held a preferable correlation with breast cancer and suppressed the expression of CSC makers. Further functional experiments, including mammary spheroid formation, wound-healing, transwell-invasion, detection of tumor initiation, and metastatic ability, showed that 1-Benzy suppressed the stemness and metastasis of breast cancer cells. Additionally, we further demonstrated that CYP4Z1 is necessary for 1-Benzy-mediated suppression on breast cancer stemness and 1-Benzy exerted a weaker effect in breast cancer cells with CYP4Z1 knockdown. Taken together, our data suggest that 1-Benzy might be a potential drug suppressing breast cancer stemness via targeting CYP4Z1.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Familia 4 del Citocromo P450/genética , Familia 4 del Citocromo P450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Imidazoles , Línea Celular Tumoral
6.
BMC Genomics ; 24(1): 369, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393242

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are small endogenous non-coding RNAs that regulate gene expression by down-regulating it. Several studies have suggested that miRNAs plays a crucial role in mammalian skin color production. The TYRP1 gene, a member of the tyrosine family, is an important candidate gene that affects melanogenesis. This study aimed to identify genes and miRNAs that affect melanin production in Xiang pigs by transcriptome sequencing, and to validate their targeted regulatory relationships. RESULTS: 17 miRNAs and 1,230 genes were significantly differentially expressed (P < 0.05) in the black and white skin tissues of Jianbai Xiang pigs. miRNA-221-3p was identified as a candidate miRNA for melanin formation and its target gene, TYRP1, was selected. The TYRP1 gene is a member of the TYR gene family, which evolved from the TYR gene through chromosome segmental duplication. The function of the gene was highly conserved throughout the evolutionary process. overexpression of TYRP1 gene significantly increased the expression of TYR, TYRP1, and DCT genes P < 0.01, which led to an increase in the relative content of melanin. Silencing of TYRP1 through the use of TYRP1-siRNA significantly reduced the expression of TYR, TYRP1, and DCT genes in Jianbai Xiang pig melanocytes P < 0.01, which in turn decreased the relative melanin content. The targeted binding relationship between ssc-miR-221-3p and TYRP1 gene was validated. After transfection of porcine melanocytes with ssc-miR-221-3p mimic, the expression of ssc-miR-221-3p was significantly up-regulated (P < 0.01). Furthermore, the mRNA and protein levels of TYR, TYRP1, and DCT genes were significantly down-regulated (P < 0.01), and melanin content in cells was significantly reduced (P < 0.01). CONCLUSION: The TYRP1 gene affects melanogenesis in melanocytes of Jianbai Xiang pigs, and ssc-miR-221-3p targets the TYRP1 gene to regulate melanogenesis in melanocytes of Jianbai Xiang pigs.


Asunto(s)
MicroARNs , ARN Pequeño no Traducido , Porcinos , Animales , Melaninas , Melanocitos , Tirosina , Evolución Biológica , Duplicación Cromosómica , MicroARNs/genética , Mamíferos
7.
Mol Pharm ; 20(10): 4868-4882, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37708383

RESUMEN

Proteins are essential for life, as they participate in all vital processes in the body. In the past decade, delivery of active proteins to specific cells and organs has attracted increasing interest. However, most proteins cannot enter the cytoplasm due to the cell membrane acting as a natural barrier. To overcome this challenge, various proteins have been engineered to acquire cell-penetrating capacity by mimicking or modifying natural shuttling proteins. In this review, we provide an overview of the different types of engineered cell-penetrating proteins such as cell-penetrating peptides, supercharged proteins, receptor-binding proteins, and bacterial toxins. We also discuss some strategies for improving endosomal escape such as pore formation, the proton sponge effect, and hijacking intracellular trafficking pathways. Finally, we introduce some novel methods and technologies for designing and detecting engineered cell-penetrating proteins.

8.
Chem Biodivers ; 20(6): e202300570, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37194166

RESUMEN

Twenty-two quaternary 8-dichloromethylprotoberberine alkaloids were synthesized from unmodified quaternary protoberberine alkaloids (QPAs) to improve their physical and chemical properties and to obtain selectively anticancer derivatives. The synthesized derivatives showed more appropriate octanol/water partition coefficients by up to values 3-4 compared to unmodified QPA substrates. In addition, these compounds exhibited significant antiproliferative activity against colorectal cancer cells and lower toxicity on normal cells, resulting in more significant selectivity indices than unmodified QPA compounds in vitro. The IC50 values of antiproliferative activity of quaternary 8-dichloromethyl-pseudoberberine 4-chlorobenzenesulfonate and quaternary 8-dichloromethyl-pseudopalmatine methanesulfonate against colorectal cancer cells are 0.31 µM and 0.41 µM, respectively, significantly stronger than those of other compounds and positive control 5-fluorouracil. These findings suggest that 8-dichloromethylation can be used as one of the modification strategies to guide the structural modification and subsequent investigation of anticancer drugs for CRC based on QPAs.


Asunto(s)
Alcaloides , Antineoplásicos , Neoplasias Colorrectales , Humanos , Alcaloides/farmacología , Alcaloides/química , Línea Celular , Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Estructura Molecular
9.
Chem Biodivers ; 20(5): e202300230, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36951446

RESUMEN

Natural QPAs have anti-cancer property. The prodrugs of QPAs synthesized in our work with significantly improved solubility showed significantly stronger activity in animal experiments. Nevertheless, the mechanism of action of QPAs for treating cancers remains poorly understood. Here, a chemoproteomic study reveals that QPAs non-covalently and multivalently bind to PES1 in CRC cells, which impinges on the direct interaction between hTERT and hTR in the assembly of the telomerase complex, downregulates telomerase activity, and so promotes the aging process of CRC cells. This study is beneficial for us to conduct extensively the pharmaceutical chemistry research of QPAs.


Asunto(s)
Alcaloides de Berberina , Telomerasa , Animales , Telomerasa/metabolismo , ARN/química
10.
Molecules ; 28(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36771081

RESUMEN

RING finger protein 168 (RNF168) is an E3 ubiquitin ligase with the RING finger domain. It is an important protein contributing to the DNA double-strand damage repair pathway. Recent studies have found that RNF168 is significantly implicated in the occurrence and development of various cancers. Additionally, RNF168 contributes to the drug resistance of tumor cells by enhancing their DNA repair ability or regulating the degradation of target proteins. This paper summarizes and prospects the research progress of the structure and main functions of RNF168, especially its roles and the underlying mechanisms in tumorigenesis.


Asunto(s)
Reparación del ADN , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Carcinogénesis/genética , Ubiquitinación , Daño del ADN
11.
Molecules ; 28(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36771004

RESUMEN

The protein ISG15 encoded by interferon-stimulated gene (ISG) 15 is the first identified member of the ubiquitin-like protein family and exists in the form of monomers and conjugated complexes. Like ubiquitin, ISG15 can mediate an ubiquitin-like modification by covalently modifying other proteins, known as ISGylation. There is growing evidence showing that both the free and conjugated ISG15 are involved in multiple key cellular processes, including autophagy, exosome secretion, DNA repair, immune regulation, and cancer occurrence and progression. In this review, we aim to further clarify the function of ISG15 and ISGylation in cancer, demonstrate the important relationship between ISG15/ISGylation and cancer, and emphasize new insights into the different roles of ISG15/ISGylation in cancer progression. This review may contribute to therapeutic intervention in cancer. However, due to the limitations of current research, the regulation of ISG15/ISGylation on cancer progression is not completely clear, thus further comprehensive and sufficient correlation studies are still needed.


Asunto(s)
Citocinas , Neoplasias , Humanos , Citocinas/metabolismo , Interferones , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Neoplasias/metabolismo
12.
Eur Radiol ; 32(5): 3541-3552, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35015125

RESUMEN

OBJECTIVES: This study was designed to evaluate the performance of high-resolution magnetic resonance imaging (HR-MRI) in detecting giant cell arteritis (GCA), evaluate superficial extracranial artery and other MRI abnormalities, and compare three-dimensional (3D) and two-dimensional (2D) techniques. METHODS: PubMed, Web of Science, and Cochrane Library were screened up to March 7, 2021, and further selection was performed according to the eligibility criteria. Quality Assessment of Diagnostic Accuracy Studies-2 was used for quality assessment, and heterogeneity assessment and statistical calculations were also performed. RESULTS: In total, 1851 records were retrieved from online databases, and 15 studies were finally included. Regarding the performance of HR-MRI, the superficial extracranial artery had 75% sensitivity and 89% specificity, respectively, with an area under the receiver operating characteristic curve (AUC) of 0.91. Positive and negative post-test possibilities were 86% and 20%, respectively, with clinical diagnosis as reference. When referenced with temporal artery biopsy, the sensitivity was 91%, specificity was 78%, AUC was 0.92, and positive and negative post-test possibilities were 78% and 10%, respectively. 3D HR-MRI and 2D HR-MRI had 70% and 72% sensitivity, respectively, and 91% and 84% specificity, respectively. CONCLUSIONS: HR-MRI is a valuable imaging modality for GCA diagnosis. It provided high accuracy in the diagnosis of GCA and played a potential role in identifying GCA-related ischemic optic neuropathy. 3D HR-MRI had better specificity than 2D HR-MRI. KEY POINTS: HR-MRI helps clinicians to diagnose GCA. Superficial extracranial arteries and other MRI abnormalities can be assessed with HR-MRI. HR-MRI can help in assessing GCA-related optic neuropathy.


Asunto(s)
Arteritis de Células Gigantes , Biopsia , Arteritis de Células Gigantes/diagnóstico por imagen , Arteritis de Células Gigantes/patología , Humanos , Imagen por Resonancia Magnética/métodos , Nervio Óptico/patología , Sensibilidad y Especificidad , Arterias Temporales/patología
13.
Org Biomol Chem ; 20(3): 658-666, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34951439

RESUMEN

The first total synthesis of (S)-(+)-ovigerine, (S)-(+)-N-formylovigerine, and (6aS,6a'S)-(+)-ovigeridimerine of aporphine alkaloids with a benzo[d][1,3]dioxole structure feature was established. The strategy was based upon the well-known Pd-catalyzed arylation to set the aporphine framework, and Noyori asymmetric hydrogenation followed by diastereoselective resolution to achieve excellent enantioselectivity. By slightly modifying the total synthetic route and strategically combining it with a aza-Michael addition, Bischler-Napieralski reaction and N-arylation, this methodology was also applied to the total syntheses of benzo[d][1,3]dioxole-type benzylisoquinoline alkaloids of coptisines and dibenzopyrrocolines, including two impatiens, tetrahydrocoptisine, and quaternary coptisine bromide of coptisines and two dibenzopyrrocoline analogues, with the syntheses of all of these target compounds being efficient. Among the nine synthesized compounds, the total syntheses of the three aporphines and the two impatiens, all with ee values of greater than 99%, were reported for the first time. This work also represents the first unification of synthetic routes for the total synthesis of benzo[d][1,3]dioxole-type aporphines, coptisines, and dibenzopyrrocolines.

14.
Nanotechnology ; 33(39)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35700715

RESUMEN

The conductive skeleton and aligned carbon nanotube array (CNTA) structure can greatly shorten the ion transfer path and promote the charge transfer speed, which makes the CNTA an ideal electrode material for energy storage application. However, poor mechanical stability and low specific capacitance greatly impede its practical utilization. Here, we introduce a promising flexible electrode material based on the natural spider silk protein (SSP) modified CNTA(SSP/CNTA) with improved hydrophilicity and mechanical flexibility. The redox-active Fe3+doped SSP/CNTA flexible solid-state supercapacitor (FSSC) device with superior energy storage performance was assembled in a symmetric 'sandwich-type' structure. The synergetic interaction between Fe3+ions and the SSP are proved to greatly enhance the electrochemical performance especially the long-term cyclic stability. The Fe3+doped SSP/CNTA FSSCs device achieves an ultra-high volumetric capacitance of 4.92 F cm-3at a sweep speed of 1 mV s-1. Meanwhile it exhibited an excellent cycling stability with an increased capacitance by 10% after 10 000 charge-discharge cycles. As a control, a Fe3+doped CNTA composite device without SSP will lose over 74% of the capacitance after 10 000 cycles. The energy storage mechanism analysis confirms the dominated capacitive behavior of the device, which explained a considerable power density and rate performance. Our method thus provides a promising strategy to build up highly-efficient redox-enhanced FSSCs for next generation of wearable and implantable electronics.

15.
Macromol Rapid Commun ; 43(11): e2200127, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35334130

RESUMEN

Biological polyampholytes are ubiquitous in living organisms with primary functions including serving as transporters for moving chemical molecular species across the cell membranes. Synthetic amphoteric macromolecules that can change their phase states depending on the environment to simulate some properties of natural polyampholytes are of great interest. Here, the implementation of synthetic pseudo polymeric ampholytes is explored with ion-recognition-triggered conformational change. The phase transition behaviors of the ion-recognition-creative polyampholytes that contain deprotonated carboxylic acid groups as negative charges and 18-crown-6 units for forming positively charged host-guest complexes are systematically investigated. The ion-recognition-triggered phase transition behaviors of pseudo polyampholytes significantly depend on cation species and concentrations. Only those specific ions such as K+ , Ba2+ , Sr2+ and Pb2+ ions that can form 1:1 host-guest complexes with 18-crown-6 units in polymers enable control over conformational change like that of traditional pH-dependent polyampholytes. By regulating the content of carboxylic acid groups to match the content of ion-recognized positive charges provided by the host-guest complexes, the pseudo polyampholytes are more sensitive to the recognizable cations. Such ion-recognition-triggered amphoteric characteristics make the pseudo polyampholytes act like biological proteins, nucleic acids, and enzymes as molecular transporters, genetic code storage, and biocatalysts in artificial systems.


Asunto(s)
Ácidos Carboxílicos , Polímeros , Iones/química , Conformación Molecular , Transición de Fase , Polímeros/química
16.
Environ Toxicol ; 37(2): 192-200, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34661962

RESUMEN

Tanshinone IIA is the active constituent extracted from Salvia Miltiorrhza. Numerous studies have shown that Tanshinone IIA could inhibit tumor proliferation and metastasis, including gastric cancer. However, the effect of Tanshinone IIA on gastric cancer cell stemness stays unclear. Here, we found that Tanshinone IIA could reduce gastric cancer cell stemness through detecting spheroid-forming, flow cytometry analysis, and the expression of stemness markers (OCT3/4, ALDH1A1, and CD44). Mechanistically, Tanshinone IIA increased the level of lipid peroxides and decreased glutathione level in gastric cancer cells, both of which are the markers of ferroptosis. Similarly, ferroptosis inducers (erastin, sulfasalazine, and sorafenib) reduced gastric cancer cell stemness. Additionally, the inhibitory effects of Tanshinone IIA on GC cell stemness were reversed by ferroptosis inhibitor (Fer-1) or overexpression of SLC7A11, which is a critical ferroptosis inhibitor. Therefore, we revealed that Tanshinone IIA inhibited the stemness of gastric cancer cells partly through inducing ferroptosis.


Asunto(s)
Antineoplásicos Fitogénicos , Ferroptosis , Neoplasias Gástricas , Abietanos , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias Gástricas/tratamiento farmacológico
17.
BMC Surg ; 22(1): 211, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35655200

RESUMEN

OBJECTIVES: To evaluate the feasibility and advantages of wedge resection plus transverse suture without mesentery detached approach applied to loop ileostomy closure by analyzing the surgical data and the incidence of postoperative complications of patients undergoing this procedure. METHODS: We performed a retrospective analysis of the hospitalization data of patients who underwent ileostomy closure surgery and met the research standards from January 2017 to April 2021 in Guangxi Medical University Cancer Hospital; all surgeries were performed by the same surgeon. The perioperative data were statistically analyzed by grouping. RESULTS: In total, 65 patients were enrolled in this study, with 12 in the wedge resection group, 35 in the stapler group, and 18 in the hand suture group. There was no significant difference in operation time between the wedge resection group and stapler group (P > 0.05), but both groups had shorter operation time than that in the hand suture group (P < 0.05). The postoperative exhaustion time of wedge resection group was earlier than that of the others, and cost of surgical consumables in the wedge resection group was significantly lower than that in the stapler group, all with statistically significant differences (P < 0.05). By contrast, there were no statistically significant differences in postoperative complication incidences among the three groups. CONCLUSIONS: The wedge resection plus transverse suture without mesentery detached approach is safe and easy for closure of loop ileostomy in selected patients, and the intestinal motility recovers rapidly postoperatively. It costs less surgical consumables, and is particularly suitable for the currently implemented Diagnosis-Related Groups payment method.


Asunto(s)
Ileostomía , Complicaciones Posoperatorias , China , Estudios de Factibilidad , Humanos , Ileostomía/métodos , Mesenterio/cirugía , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Estudios Retrospectivos
18.
Genomics ; 113(4): 2276-2289, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33965547

RESUMEN

BACKGROUND/AIM: There has been increasing evidence for the function of long non-coding RNA (lncRNA) in nasopharyngeal carcinoma (NPC). We aim to delve into the position of lncRNA HOX antisense intergenic RNA (HOTAIR), together with enhancer of zeste homolog 2 (EZH2), E-cadherin and trimethylation of lysine 27 on histone H3 (H3K27me3) in NPC. METHODS: HOTAIR, EZH2, and E-cadherin expression in NPC tissues and cells were tested. NPC cell biological functions were examined through gain-of and loss-of function assays. The mechanism of lncRNA HOTAIR/E-cadherin/EZH2/H3K27 axis in NPC was decoded. RESULTS: LncRNA HOTAIR and EZH2 were highly expressed in NPC, and E-cadherin was lowly expressed. Down-regulation of HOTAIR or EZH2 inhibited NPC cell progression and tumor growth. HOTAIR recruited histone methylase EZH2 to mediate trimethylation of H3K27 and regulated E-cadherin expression. CONCLUSION: HOTAIR inhibits E-cadherin by stimulating the trimethylation of H3K27 to promote NPC cell progression through recruiting histone methylase EZH2.


Asunto(s)
Neoplasias Nasofaríngeas , ARN Largo no Codificante , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , Humanos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
19.
J Asian Nat Prod Res ; 24(4): 388-396, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34132154

RESUMEN

In order to obtain new dihydrocoptisine-type compounds with stable structure and activating XBP1 transcriptional activity, (±)-8-trifluoromethyldihydrocoptisine derivatives as target compounds were synthesized from quaternary ammonium chlorides of coptisine alkaloids as starting materials by a one-step reaction. The structures of the synthesized compounds were confirmed by 1H-, 13C-, and 19F-NMR as well as HRESIMS methods. These compounds showed more significant structural stability and activating XBP1 transcription activity in vitro than dihydrocoptisine as positive control. No obvious cytotoxicity on normal cell in vitro was observed with (±)-8-trifluoromethyldihydrocoptisines. Trifluoromethylation can be used as one of the fluorine modification strategies for dihydrocoptisines to guide follow-up studies on structural modification of coptisine-type alkaloids and on anti-Ulcerative colitis drugs with coptisines.


Asunto(s)
Alcaloides , Colitis Ulcerosa , Alcaloides/farmacología , Humanos , Estructura Molecular , Proteína 1 de Unión a la X-Box/metabolismo
20.
J Asian Nat Prod Res ; 24(7): 603-616, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34622714

RESUMEN

The endophytic fungus Diaporthe sp. is known to contain many secondary metabolites, but fatty acid derivatives have rarely been found. In this study, four new fatty acid derivatives (1-4), together with four known compounds (5-8), were isolated from Diaporthe sp., which was obtained from the stem of Ligularia fischeri. The absolute configurations of the new compounds 1-4 were deduced based on spectroscopic technique and J-based coupling constant analysis. Moreover, compound 1 exhibited cytotoxic activities against HCT-8 and MCF-7 cancer cells, and compounds 3 and 4 showed modest selectivity for HCT-8 cells by MTT assay.


Asunto(s)
Ascomicetos , Ligularia , Ascomicetos/química , Línea Celular Tumoral , Ácidos Grasos/farmacología , Humanos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA