Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Br J Anaesth ; 132(2): 334-342, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38044237

RESUMEN

BACKGROUND: Delayed emergence from general anaesthesia poses a significant perioperative safety hazard. Subanaesthetic doses of ketamine not only deepen anaesthesia but also accelerate recovery from isoflurane anaesthesia; however, the mechanisms underlying this phenomenon remain elusive. Esketamine exhibits a more potent receptor affinity and fewer adverse effects than ketamine and exhibits shorter recovery times after brief periods of anaesthesia. As the paraventricular thalamus (PVT) plays a pivotal role in regulating wakefulness, we studied its role in the emergence process during combined esketamine and isoflurane anaesthesia. METHODS: The righting reflex and cortical electroencephalography were used as measures of consciousness in mice during isoflurane anaesthesia with coadministration of esketamine. The expression of c-Fos was used to determine neuronal activity changes in PVT neurones after esketamine administration. The effect of esketamine combined with isoflurane anaesthesia on PVT glutamatergic (PVTGlu) neuronal activity was monitored by fibre photometry, and chemogenetic technology was used to manipulate PVTGlu neuronal activity. RESULTS: A low dose of esketamine (5 mg kg-1) accelerated emergence from isoflurane general anaesthesia (474 [30] s vs 544 [39] s, P=0.001). Esketamine (5 mg kg-1) increased PVT c-Fos expression (508 [198] vs 258 [87], P=0.009) and enhanced the population activity of PVTGlu neurones (0.03 [1.7]% vs 6.9 [3.4]%, P=0.002) during isoflurane anaesthesia (1.9 [5.7]% vs -5.1 [5.3]%, P=0.016) and emergence (6.1 [6.2]% vs -1.1 [5.0]%, P=0.022). Chemogenetic suppression of PVTGlu neurones abolished the arousal-promoting effects of esketamine (459 [33] s vs 596 [33] s, P<0.001). CONCLUSIONS: Our results suggest that esketamine promotes recovery from isoflurane anaesthesia by activating PVTGlu neurones. This mechanism could explain the rapid arousability exhibited upon treatment with a low dose of esketamine.


Asunto(s)
Anestésicos por Inhalación , Isoflurano , Ketamina , Tálamo , Animales , Ratones , Anestesia General , Anestésicos por Inhalación/farmacología , Isoflurano/farmacología , Ketamina/farmacología , Tálamo/efectos de los fármacos
2.
Crit Rev Biotechnol ; : 1-19, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160372

RESUMEN

D-amino acids (D-AAs) are the enantiomeric counterparts of L-amino acids (L-AAs) and important functional factors with a wide variety of physiological activities and applications in the food manufacture industry. Some D-AAs, such as D-Ala, D-Leu, and D-Phe, have been favored by consumers as sweeteners and fragrances because of their unique flavor. The biosynthesis of D-AAs has attracted much attention in recent years due to their unique advantages. In this review, we comprehensively analyze the structure-function relationships, biosynthesis pathways, multi-enzyme cascade and whole-cell catalysis for the production of D-AAs. The state-of-the-art strategies, including immobilization, protein engineering, and high-throughput screening, are summarized. Future challenges and perspectives of strategies-driven by bioinformatics technologies and smart computing technologies, as well as enzyme immobilization, are also discussed. These new approaches will promote the commercial production and application of D-AAs in the food industry by optimizing the key enzymes for industrial biocatalysts.

3.
Angew Chem Int Ed Engl ; 62(10): e202216721, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36658306

RESUMEN

Biosynthesis of D-allulose has been achieved using ketose 3-epimerases (KEases), but its application is limited by poor catalytic performance. In this study, we redesigned a genetically encoded biosensor based on a D-allulose-responsive transcriptional regulator for real-time monitoring of D-allulose. An ultrahigh-throughput droplet-based microfluidic screening platform was further constructed by coupling with this D-allulose-detecting biosensor for the directed evolution of the KEases. Structural analysis of Sinorhizobium fredii D-allulose 3-epimerase (SfDAE) revealed that a highly flexible helix/loop region exposes or occludes the catalytic center as an essential lid conformation regulating substrate recognition. We reprogrammed SfDAE using structure-guided rational design and directed evolution, in which a mutant M3-2 was identified with 17-fold enhanced catalytic efficiency. Our research offers a paradigm for the design and optimization of a biosensor-based microdroplet screening platform.


Asunto(s)
Fructosa , Racemasas y Epimerasas , Fructosa/química
4.
Biochem Biophys Res Commun ; 626: 100-106, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-35981419

RESUMEN

Polyethylene terephthalate (PET) is one of the most abundantly produced synthetic polyesters. The vast number of waste plastics including PET has challenged the waste management sector while also posing a serious threat to the environment due to improper littering. Recently, enzymatic PET degradation has been shown to be a viable option for a circular plastic economy, which can mitigate the plastic pollution. While protein engineering studies on specific PET degradation enzymes such as leaf-branch compost cutinase (LCC), Thermobifida sp. cutinases and Ideonella sakaiensis PETase (IsPETase) have been extensively published, other homologous PET degrading enzymes have received less attention. Ple629 is a polyester hydrolase identified from marine microbial consortium having activity on PET and the bioplastic polybutylene adipate terephthalate (PBAT). In order to explore its catalytic mechanism and improve its potential for PET hydrolysis, we solved its crystal structure in complex with a PET monomer analogue, and validated its structural and mechanistic similarity to known PET hydrolases. By structural comparisons, we identified some hot spot positions described in previous research on protein engineering of PET hydrolases. We substitute these amino acid residues in Ple629, and obtained variants with improved activity and thermo-stability. The most promising variant D226A/S279A exhibited a more than 5.5-fold improved activity on PET nanoparticles than the wild-type enzyme, suggesting its potential applicability in the biotechnological plastic recycling.


Asunto(s)
Hidrolasas , Plásticos , Hidrolasas/metabolismo , Hidrólisis , Plásticos/química , Tereftalatos Polietilenos/metabolismo , Ingeniería de Proteínas
5.
Microb Cell Fact ; 18(1): 59, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30909913

RESUMEN

BACKGROUND: A novel D-allulose 3-epimerase from Staphylococcus aureus (SaDAE) has been screened as a D-allulose 3-epimerase family enzyme based on its high specificity for D-allulose. It usually converts both D-fructose and D-tagatose to respectively D-allulose and D-sorbose. We targeted potential biocatalysts for the large-scale industrial production of rare sugars. RESULTS: SaDAE showed a high activity on D-allulose with an affinity of 41.5 mM and catalytic efficiency of 1.1 s-1 mM-1. Four residues, Glu146, Asp179, Gln205, and Glu240, constitute the catalytic tetrad of SaDAE. Glu146 and Glu240 formed unique interactions with substrates based on the structural model analysis. The redesigned SaDAE_V105A showed an improvement of relative activity toward D-fructose of 68%. The conversion rate of SaDAE_V105A reached 38.9% after 6 h. The triple mutant S191D/M193E/S213C showed higher thermostability than the wild-type enzyme, exhibiting a 50% loss of activity after incubation for 60 min at 74.2 °C compared with 67 °C for the wild type. CONCLUSIONS: We redesigned SaDAE for thermostability and biocatalytic production of D-allulose. The research will aid the development of industrial biocatalysts for D-allulose.


Asunto(s)
Carbohidrato Epimerasas , Fructosa/biosíntesis , Ingeniería Metabólica , Staphylococcus aureus , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Carbohidrato Epimerasas/biosíntesis , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/genética , Concentración de Iones de Hidrógeno , Cinética , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Especificidad por Sustrato
6.
J Biol Chem ; 292(6): 2182-2190, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28011642

RESUMEN

Alginate is an abundant algal polysaccharide, composed of ß-d-mannuronate and its C5 epimer α-l-guluronate, that is a useful biomaterial in cell biology and tissue engineering, with applications in cancer and aging research. The alginate lyase (EC 4.2.2.3) from Aplysia kurodai, AkAly30, is a eukaryotic member of the polysaccharide lyase 14 (PL-14) family and degrades alginate by cleaving the glycosidic bond through a ß-elimination reaction. Here, we present the structural basis for the substrate specificity, with a preference for polymannuronate, of AkAly30. The crystal structure of AkAly30 at a 1.77 Å resolution and the putative substrate-binding model show that the enzyme adopts a ß-jelly roll fold at the core of the structure and that Lys-99, Tyr-140, and Tyr-142 form catalytic residues in the active site. Their arrangements allow the carboxyl group of mannuronate residues at subsite +1 to form ionic bonds with Lys-99. The coupled tyrosine forms a hydrogen bond network with the glycosidic bond, and the hydroxy group of Tyr-140 is located near the C5 atom of the mannuronate residue. These interactions could promote the ß-elimination of the mannuronate residue at subsite +1. More interestingly, Gly-118 and the disulfide bond formed by Cys-115 and Cys-124 control the conformation of an active-site loop, which makes the space suitable for substrate entry into subsite -1. The cleavage efficiency of AkAly30 is enhanced relative to that of mutants lacking either Gly-118 or the Cys-115-Cys-124 disulfide bond. The putative binding model and mutagenesis studies provide a novel substrate recognition mode explaining the polymannuronate specificity of PL-14 alginate lyases.


Asunto(s)
Polisacárido Liasas/metabolismo , Polisacáridos/metabolismo , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico , Simulación del Acoplamiento Molecular , Mutagénesis , Polisacárido Liasas/química , Polisacárido Liasas/genética , Polisacáridos/química , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
7.
Protein Expr Purif ; 149: 1-6, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29674115

RESUMEN

Hydroxy amino acids are produced by Fe(II)/αKG-dependent dioxygenases and used widely as medicinal intermediates for chemical synthesis. A novel l-leucine 5-hydroxylase gene from Nostoc piscinale (NpLDO) was cloned into pET28a (+), pColdI and pQE-80 L plasmids. Using a two-step purification process (Ni-affinity chromatography and gel filtration), highly purified recombinant NpLDO was obtained. Recombinant NpLDO displayed unexpectedly high sulfoxidation activity toward l-methionine. The reaction products were analyzed by high-performance liquid chromatography. Sequence alignment analysis implied that residues of His150, His236 and Asp152 constitute the catalytic triad of NpLDO, which is completely conserved in the Fe(II)/αKG-dependent dioxygenase superfamily. Biochemical data showed that NpLDO catalyzed regio- and stereoselective hydroxylation of l-leucine and sulfoxidation of l-methionine with Fe(II) and l-ascorbic acid as cofactor, and αKG as cosubstrate, respectively.


Asunto(s)
Proteínas Bacterianas/metabolismo , Leucina/química , Metionina/química , Oxigenasas de Función Mixta/metabolismo , Nostoc/enzimología , Secuencia de Aminoácidos , Ácido Ascórbico/química , Proteínas Bacterianas/genética , Catálisis , Dominio Catalítico , Mezclas Complejas/genética , Mezclas Complejas/metabolismo , Hidroxilación , Hierro/química , Ácidos Cetoglutáricos/química , Cinética , Oxigenasas de Función Mixta/genética , Nostoc/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo
8.
Microb Cell Fact ; 17(1): 141, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-30200975

RESUMEN

BACKGROUND: Biosynthesis of steroidal drugs is of great benefit in pharmaceutical manufacturing as the process involves efficient enzymatic catalysis at ambient temperature and atmospheric pressure compared to chemical synthesis. 3-ketosteroid-∆1-dehydrogenase from Arthrobacter simplex (KsdD3) catalyzes 1,2-desaturation of steroidal substrates with FAD as a cofactor. RESULTS: Recombinant KsdD3 exhibited organic solvent tolerance. W117, F296, W299, et al., which were located in substrate-binding cavity, were predicted to form hydrophobic interaction with the substrate. Structure-based site-directed saturation mutagenesis of KsdD3 was performed with W299 mutants, which resulted in improved catalytic activities toward various steroidal substrates. W299A showed the highest increase in catalytic efficiency (kcat/Km) compared with the wild-type enzyme. Homology modelling revealed that the mutants enlarged the active site cavity and relieved the steric interference facilitating recognition of C17 hydroxyl/carbonyl steroidal substrates. Steered molecular dynamics simulations revealed that W299A/G decreased the potential energy barrier of association of substrates and dissociation of the corresponding products. The biotransformation of AD with enzymatic catalysis and resting cells harbouring KsdD3 WT/mutants revealed that W299A catalyzed the maximum ADD yields of 71 and 95% by enzymatic catalysis and resting cell conversion respectively, compared with the wild type (38 and 75%, respectively). CONCLUSIONS: The successful rational design of functional KsdD3 greatly advanced our understanding of KsdD family enzymes. Structure-based site-directed saturation mutagenesis and biochemical data were used to design KsdD3 mutants with a higher catalytic activity and broader selectivity.


Asunto(s)
Cetosteroides/metabolismo , Mutagénesis Sitio-Dirigida/métodos , Oxidorreductasas/metabolismo , Biotransformación , Especificidad por Sustrato
9.
Protein Expr Purif ; 139: 1-7, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28712956

RESUMEN

Cholesterol oxidases, which catalyze the degradation of cholesterol to cholest-4-en-3-one, are widely used in the pharmaceutical and food processing industries. The cholesterol oxidase from Pimelobacter simplex (PsChO3) was transformed into E. coli BL21(DE3), but it was expressed mainly as inclusion bodies, and any soluble PsChO3 failed to bind to Ni-NTA resin. To overcome this obstacle, we devised a simple yet efficient purification and refolding process using 8 M urea for the solubilization of PsChO3 and achieved a high yield of the enzyme in its active form. Column-bound PsChO3 was refolded in situ through a gradient of successively decreased urea concentrations and purified using Ni-affinity chromatography, ionic exchange and gel filtration. This treatment converted the denatured PsChO3 into a soluble protein exhibiting an unexpected dehydrogenation activity amounting to 9.27 U/mg - an activity not reported for enzymes with noncovalently-linked FAD to date. The product, cholest-5-en-3-one, was confirmed using TLC, GC-MS and NMR. Structural analysis revealed a distinct binding mode in both FAD and substrate domain, which may explain the enzyme's unusual catalytic behavior.


Asunto(s)
Actinobacteria/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Colesterol Oxidasa/química , Colesterol Oxidasa/metabolismo , Actinobacteria/genética , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Colesterol Oxidasa/genética , Modelos Moleculares , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Microb Cell Fact ; 16(1): 193, 2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29121933

RESUMEN

BACKGROUND: D-Tagatose 3-epimerase epimerizes D-fructose to yield D-psicose, which is a rare sugar that exists in small quantities in nature and is difficult to synthesize chemically. We aim to explore potential industrial biocatalysts for commercial-scale manufacture of this rare sugar. A D-tagatose 3-epimerase from Rhodobacter sphaeroides (RsDTE) has recently been identified as a D-tagatose 3-epimerase that can epimerize D-fructose to yield D-psicose with a high conversion rate. RESULTS: The purified RsDTE by Ni-affinity chromatography, ionic exchange chromatography and gel filtration forms a tetramer in solution. The maximal activity was in Tris-HCl buffer pH 8.5, and the optimal temperature was at 35 °C. The product, D-psicose, was confirmed using HPLC and NMR. Crystals of RsDTE were obtained using crystal kits and further refined under crystallization conditions such as 10% PEG 8000,0.1 M HEPES pH 7.5, and 8% ethylene glycol at 20 °C using the sitting-drop vapor diffusion method. The RsDTE homology model showed that it possessed the characteristic TIM-barrel fold. Four residues, Glu156, Asp189, Gln215 and Glu250, forms a hydrogen bond network with the active Mn(II) for the hydride transfer reaction. These residues may constitute the catalytic tetrad of RsDTE. The residues around O1, O2 and O3 of the substrates were conserved. However, the binding-site residues are different at O4, O5 and O6. Arg118 formed the unique hydrogen bond with O4 of D-fructose which indicates RsDTE's preference of D-fructose more than any other family enzymes. CONCLUSIONS: RsDTE possesses a different metal-binding site. Arg118, forming unique hydrogen bond with O4 of D-fructose, regulates the substrate recognition. The research on D-tagatose 3-epimerase or D-psicose 3-epimerase enzymes attracts enormous commercial interest and would be widely used for rare sugar production in the future.


Asunto(s)
Carbohidrato Epimerasas/química , Hexosas/metabolismo , Rhodobacter sphaeroides/enzimología , Sitios de Unión , Biocatálisis , Carbohidrato Epimerasas/metabolismo , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Fructosa/metabolismo , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Microbiología Industrial , Cinética , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Especificidad por Sustrato , Temperatura
11.
Biotechnol Lett ; 38(10): 1747-52, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27314478

RESUMEN

OBJECTIVES: To achieve multienzymatic cascade synthesis of fucosyl oligosaccharide from D-mannose by two-step fermentation pathway in Escherichia coli. RESULTS: E. coli BL21(DE3) harboring pET-22b(+) vectors with six genes, i.e., glucokinase (Glk), phosphomannomutase (ManB), mannose-1-phosphate guanylytransferase (ManC), GDP-mannose 4,6-dehydratase (Gmd), GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase/4-reductase (WcaG), and α-1,2-fucosyltransferase (Fuct) were co-inoculated, and the multienzyme synthetic pathway was constructed to produce fucosyloligosaccharide using D-mannose as substrate. The product, analyzed by LC/MS, fucosyloligosaccharide was formed under the catalysis of Fuct using GDP-fucose as donor substrate and lactose as acceptor substrate. Fucosyloligosaccharides reached 22 mM by a two-step fermentation compared to 3.7 mM with a one-pot fermentation. CONCLUSIONS: Fucosyloligosaccharide was produced by a two-step fermentation to avoid the inhibitory effect of GDP-fucose on Gmd. Two-step fermentation is a rational synthetic pathway for accumulating fucosyloligosaccharide.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Fucosa/química , Manosa/metabolismo , Complejos Multienzimáticos/genética , Oligosacáridos/biosíntesis , Vías Biosintéticas , Deshidrogenasas de Carbohidratos/genética , Carbohidrato Epimerasas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fermentación , Fucosiltransferasas/genética , Vectores Genéticos/genética , Glucoquinasa/genética , Guanosina Difosfato Fucosa/química , Cetona Oxidorreductasas/genética , Lactosa/química , Complejos Multienzimáticos/metabolismo , Nucleotidiltransferasas/genética , Oligosacáridos/química , Oligosacáridos/aislamiento & purificación , Fosfotransferasas (Fosfomutasas)/genética , Transformación Bacteriana
12.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 6): 1695-703, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24914980

RESUMEN

L-allo-Threonine aldolase (LATA), a pyridoxal-5'-phosphate-dependent enzyme from Aeromonas jandaei DK-39, stereospecifically catalyzes the reversible interconversion of L-allo-threonine to glycine and acetaldehyde. Here, the crystal structures of LATA and its mutant LATA_H128Y/S292R were determined at 2.59 and 2.50 Šresolution, respectively. Their structures implied that conformational changes in the loop consisting of residues Ala123-Pro131, where His128 moved 4.2 Šoutwards from the active site on mutation to a tyrosine residue, regulate the substrate specificity for L-allo-threonine versus L-threonine. Saturation mutagenesis of His128 led to diverse stereoselectivity towards L-allo-threonine and L-threonine. Moreover, the H128Y mutant showed the highest activity towards the two substrates, with an 8.4-fold increase towards L-threonine and a 2.0-fold increase towards L-allo-threonine compared with the wild-type enzyme. The crystal structures of LATA and its mutant LATA_H128Y/S292R reported here will provide further insights into the regulation of the stereoselectivity of threonine aldolases targeted for the catalysis of L-allo-threonine/L-threonine synthesis.


Asunto(s)
Aeromonas/enzimología , Glicina Hidroximetiltransferasa/metabolismo , Mutación , Secuencia de Bases , Dominio Catalítico , Cartilla de ADN , Glicina Hidroximetiltransferasa/química , Glicina Hidroximetiltransferasa/genética , Modelos Moleculares , Reacción en Cadena de la Polimerasa , Conformación Proteica , Especificidad por Sustrato
13.
Biochem Biophys Res Commun ; 450(4): 1458-61, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25017911

RESUMEN

L-threo-3,4-Dihydroxyphenylserine (l-DOPS, Droxidopa) is a psychoactive drug and synthetic amino acid precursor that acts as a prodrug to the neurotransmitters. SadA, a dioxygenase from Burkholderia ambifaria AMMD, is an Fe(II)- and α-ketoglutarate (KG)-dependent enzyme that catalyzes N-substituted branched-chain or aromatic l-amino acids. SadA is able to produce N-succinyl-l-threo-3,4-dimethoxyphenylserine (NSDOPS), which is a precursor of l-DOPS, by catalyzing the hydroxylation of N-succinyl-3,4-dimethoxyphenylalanine (NSDOPA). However, the catalytic activity of SadA toward NSDOPS is much lower than that toward N-succinyl branched-chain l-amino acids. Here, we report an improved biocatalytic synthesis of NSDOPS with SadA. Structure-based protein engineering was applied to improve the α-KG turnover activity for the synthesis of NSDOPS. The G79A, G79A/F261W or G79A/F261R mutant showed a more than 6-fold increase in activity compared to that of the wild-type enzyme. The results provide a new insight into the substrate specificity toward NSDOPA and will be useful for the rational design of SadA mutants as a target of industrial biocatalysts.


Asunto(s)
Compuestos Ferrosos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Serina/análogos & derivados , Biocatálisis , Oxigenasas de Función Mixta/química , Simulación del Acoplamiento Molecular , Conformación Proteica , Serina/biosíntesis
14.
Appl Microbiol Biotechnol ; 98(1): 243-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23828603

RESUMEN

Conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708, identified as a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent ketopantoyl lactone reductase, belongs to the aldo-keto reductase superfamily. This enzyme reduces ketopantoyl lactone to D-pantoyl lactone in a strictly stereospecific manner. To elucidate the structural basis of the substrate specificity, we determined the crystal structures of the apo CPR-C2 and CPR-C2/NADPH complex at 1.70 and 1.80 Å resolutions, respectively. CPR-C2 adopted a triose-phosphate isomerase barrel fold at the core of the structure. Binding with the cofactor NADPH induced conformational changes in which Thr27 and Lys28 moved 15 and 5.0 Å, respectively, in the close vicinity of the adenosine 2'-phosphate group of NADPH to form hydrogen bonds. Based on the comparison of the CPR-C2/NADPH structure with 3-α-hydroxysteroid dehydrogenase and mutation analyses, we constructed substrate binding models with ketopantoyl lactone, which provided insight into the substrate specificity by the cofactor-induced structure. The results will be useful for the rational design of CPR-C2 mutants targeted for use in the industrial manufacture of ketopantoyl lactone.


Asunto(s)
Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Candida/enzimología , NADP/química , NADP/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Cristalografía por Rayos X , Análisis Mutacional de ADN , Modelos Moleculares , Unión Proteica , Conformación Proteica
15.
Adv Sci (Weinh) ; 11(14): e2306478, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308132

RESUMEN

Fast screening strategies that enable high-throughput evaluation and identification of desired variants from diversified enzyme libraries are crucial to tailoring biocatalysts for the synthesis of D-allulose, which is currently limited by the poor catalytic performance of ketose 3-epimerases (KEases). Here, the study designs a minimally equipment-dependent, high-throughput, and growth-coupled in vivo screening platform founded on a redesigned D-allulose-dependent biosensor system. The genetic elements modulating regulator PsiR expression levels undergo systematic optimization to improve the growth-responsive dynamic range of the biosensor, which presents ≈30-fold facilitated growth optical density with a high signal-to-noise ratio (1.52 to 0.05) toward D-allulose concentrations from 0 to 100 mm. Structural analysis and evolutionary conservation analysis of Agrobacterium sp. SUL3 D-allulose 3-epimerase (ADAE) reveal a highly conserved catalytic active site and variable hydrophobic pocket, which together regulate substrate recognition. Structure-guided rational design and directed evolution are implemented using the growth-coupled in vivo screening platform to reprogram ADAE, in which a mutant M42 (P38N/V102A/Y201L/S207N/I251R) is identified with a 6.28-fold enhancement of catalytic activity and significantly improved thermostability with a 2.5-fold increase of the half-life at 60 °C. The research demonstrates that biosensor-assisted growth-coupled evolutionary pressure combined with structure-guided rational design provides a universal route for engineering KEases.


Asunto(s)
Fructosa , Racemasas y Epimerasas , Fructosa/química , Fructosa/metabolismo , Evolución Biológica
16.
Int J Biol Macromol ; 273(Pt 1): 132831, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38825287

RESUMEN

17α-Hydroxyprogesterone (17α-OH-PROG) is an important intermediate with a wide range of applications in the pharmaceutical industry. Strategies based on efficient electron transfer and cofactor regeneration were used for the production of 17α-OH-PROG. Here, CYP260A1, Fpr and Adx were expressed using a double plasmid system, resulting in higher biotransformation efficiency. Further optimization of reaction conditions and addition of polymyxin B increased the production of 17α-OH-PROG from 12.52 mg/L to 102.37 mg/L after 12 h of biotransformation. To avoid the addition of external 5-aminolevulinic acid (ALA) as a heme precursor for the P450 enzyme, a modified C5 pathway was introduced into the engineered strain, further reducing the overall process cost. The resulting whole-cell biocatalyst achieved the highest biotransformation yield of 17α-OH-PROG reported to date, offering a promising strategy for commercial application of P450 enzymes in industrial production of hydroxylated intermediates.


Asunto(s)
Ácido Aminolevulínico , Sistema Enzimático del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Ácido Aminolevulínico/metabolismo , Transporte de Electrón , Biocatálisis , Biotransformación
17.
Bioresour Technol ; 406: 131035, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925409

RESUMEN

Yarrowia lipolytica was successfully engineered to synthesize erythritol from crude glycerol, a cheap by-product of biodiesel production, but the yield remained low. Here, a biosensor-guided adaptive evolution screening platform was constructed to obtain mutant strains which could efficiently utilize crude glycerol to produce erythritol. Erythrose reductase D46A (M1) was identified as a key mutant through whole-genome sequencing of the strain G12, which exhibited higher catalytic activity (1.6-fold of the wild-type). M1 was further modified to obtain a combinatorial mutant with 4.1-fold enhancement of catalytic activity. Finally, the metabolic network was reconfigured to redirect carbon fluxes toward erythritol synthesis. The erythritol titer of the engineered strain G31 reached 220.5 g/L with a productivity of 1.8 g/L/h in a 5-L bioreactor. The study provides valuable guidance for biosensor-based ultra-high-throughput screening strategies in Y. lipolytica, as well as presenting a new paradigm for the sustainable valorization of crude glycerol.


Asunto(s)
Eritritol , Glicerol , Yarrowia , Yarrowia/metabolismo , Yarrowia/genética , Eritritol/metabolismo , Glicerol/metabolismo , Ingeniería Metabólica/métodos , Técnicas Biosensibles/métodos , Mutación , Reactores Biológicos
18.
J Hazard Mater ; 477: 135380, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39088944

RESUMEN

The enzymatic degradation of plastic offers a green, sustainable strategy and scalable circular carbon route for solving polyester waste. Among the earlies discovered plastic-degrading enzymes are PET hydrolase (PETase) and MHET hydrolase (MHETase), which act synergistically. To promote the adsorption of enzymes on PET surfaces, increase their robustness, and enable directly depolymerization, we designed hydrophobin HFBI fused-PETase and MHETase. A customized self-assembled synergistic biocatalyst (MC@CaZn-MOF) was further developed to promote the two-step depolymerization process. The tailored catalysts showed better adhesion to the PET surface and desirable durability, retaining over 70% relative activity after incubation at pH 8.0 and 60 °C for 120 h. Importantly, MC@CaZn-MOF could directly decompose untreated AGf-PET to generate 9.5 mM TPA with weight loss over 90%. The successful implementation of a bifunctional customized catalyst makes the large-scale biocatalytic degradation of PET feasible, contributing to polymer upcycling and environmental sustainability.


Asunto(s)
Biocatálisis , Polimerizacion , Plásticos/química , Hidrolasas/metabolismo , Hidrolasas/química , Biodegradación Ambiental , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Estructuras Metalorgánicas/química
19.
Int J Pharm ; 657: 124126, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38626845

RESUMEN

As the monotherapy of available analgesics is usually accompanied by serious side effects or limited efficacy in the management of chronic pain, multimodal analgesia is widely used to achieve improved benefit-to-risk ratios in clinic. Drug-drug salts are extensively researched to optimize the physicochemical properties of active pharmaceutical ingredients (APIs) and achieve clinical benefits compared with individual APIs or their combination. New drug-drug salt crystals metformin-ibuprofen (MET-IBU) and metformin-naproxen (MET-NAP) were prepared from metformin (MET) and two poorly water-soluble anti-inflammatory drugs (IBU and NAP) by the solvent evaporation method. The structures of these crystals were confirmed by single crystal and powder X-ray diffraction, Hirshfeld surface, Fourier transform infrared spectroscopy and thermal analysis. Both MET-IBU and MET-NAP showed significantly improved solubility and intrinsic dissolution rate than the pure IBU or NAP. The stability test indicated that MET-IBU and MET-NAP have excellent physical stability under stressing test (10 days) and accelerated conditions (3 months). Moreover, isobolographic analysis suggested that MET-IBU and MET-NAP exerted potent and synergistic antinociceptive effects in λ-Carrageenan-induced inflammatory pain in mice, and both of them had an advantage in rapid pain relief. These results demonstrated the potential of MET-IBU and MET-NAP to achieve synergistic antinociceptive effects by developing drug-drug salt crystals.


Asunto(s)
Analgésicos , Cristalización , Sinergismo Farmacológico , Ibuprofeno , Metformina , Naproxeno , Solubilidad , Metformina/química , Metformina/administración & dosificación , Metformina/farmacología , Animales , Naproxeno/química , Naproxeno/administración & dosificación , Ibuprofeno/química , Ibuprofeno/administración & dosificación , Ibuprofeno/farmacología , Analgésicos/química , Analgésicos/administración & dosificación , Analgésicos/farmacología , Ratones , Masculino , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacología , Dolor/tratamiento farmacológico , Estabilidad de Medicamentos , Carragenina , Liberación de Fármacos , Sales (Química)/química
20.
Eur J Pharmacol ; 977: 176738, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38876275

RESUMEN

Pain is a common public health problem and remains as an unmet medical need. Currently available analgesics usually have limited efficacy or are accompanied by many adverse side effects. To achieve satisfactory pain relief by multimodal analgesia, new combinations of nefopam and gabapentinoids (pregabalin/gabapentin) were designed and assessed in inflammatory, osteoarthritis and neuropathic pain. Isobolographic analysis was performed to analyze the interactions between nefopam and gabapentinoids in carrageenan-induced inflammatory pain, mono-iodoacetate-induced osteoarthritis pain and paclitaxel-induced peripheral neuropathic pain in mice. The anti-inflammatory effect and motor performance of monotherapy or their combinations were evaluated in the carrageenan-induced inflammatory responses and rotarod test, respectively. Nefopam (1, 3, 5, 10, 30 mg/kg, p.o.), pregabalin (3, 6, 12, 24 mg/kg, p.o.) or gabapentin (25, 50, 75, 100 mg/kg, p.o.) dose-dependently reversed mechanical allodynia in three pain models. Isobolographic analysis indicated that the combinations of nefopam and gabapentinoids exerted synergistic anti-nociceptive effects in inflammatory, osteoarthritis, and neuropathic pain mouse models, as evidenced by the experimental ED50 (median effective dose) falling below the predicted additive line. Moreover, the combination of nefopam-pregabalin/gabapentin alleviated carrageenan-induced inflammation and edema, and also prevented gabapentinoids-related sedation or ataxia by lowering their effective doses. Collectively, the co-administration of nefopam and gabapentinoids showed synergistic analgesic effects and may result in improved therapeutic benefits for treating pain.


Asunto(s)
Analgésicos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Gabapentina , Inflamación , Nefopam , Neuralgia , Osteoartritis , Animales , Neuralgia/tratamiento farmacológico , Neuralgia/inducido químicamente , Nefopam/farmacología , Nefopam/uso terapéutico , Ratones , Gabapentina/farmacología , Gabapentina/uso terapéutico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Masculino , Osteoartritis/tratamiento farmacológico , Osteoartritis/inducido químicamente , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Pregabalina/farmacología , Pregabalina/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/inducido químicamente , Carragenina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA