Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Microb Ecol ; 85(4): 1190-1201, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35366074

RESUMEN

Host-microbiota interactions play critical roles in host development, immunity, metabolism, and behavior. However, information regarding host-microbiota interactions is limited in fishes due to their complex living environment. In the present study, an allodiploid hybrid fish derived from herbivorous Megalobrama amblycephala (♀) × carnivorous Culter alburnus (♂) was used to investigate the successional changes of the microbial communities and host-microbiota interactions during herbivorous and carnivorous dietary adaptations. The growth level was not significantly different in any developmental stage between the two diet groups of fish. The diversity and composition of the dominant microbial communities showed similar successional patterns in the early developmental stages, but significantly changed during the two dietary adaptations. A large number of bacterial communities coexisted in all developmental stages, whereas the abundance of some genera associated with metabolism, including Acinetobacter, Gemmobacter, Microbacterium, Vibrio, and Aeromonas, was higher in either diet groups of fish. Moreover, the abundance of phylum Firmicutes, Actinobacteria, and Chloroflexi was positively correlated with the host growth level. In addition, Spearman's correlation analysis revealed that the differentially expressed homologous genes in the intestine associated with cell growth, immunity, and metabolism were related to the dominant gut microbiota. Our results present evidence that host genetics-gut microbiota interactions contribute to dietary adaptation in hybrid fish, which also provides basic data for understanding the diversity of dietary adaptations and evolution in fish.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Peces/microbiología , Dieta/veterinaria , Bacterias/genética
2.
BMC Biol ; 20(1): 200, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36100845

RESUMEN

BACKGROUND: Interspecific postzygotic reproduction isolation results from large genetic divergence between the subgenomes of established hybrids. Polyploidization immediately after hybridization may reset patterns of homologous chromosome pairing and ameliorate deleterious genomic incompatibility between the subgenomes of distinct parental species in plants and animals. However, the observation that polyploidy is less common in vertebrates raises the question of which factors restrict its emergence. Here, we perform analyses of the genome, epigenome, and gene expression in the nascent allotetraploid lineage (2.95 Gb) derived from the intergeneric hybridization of female goldfish (Carassius auratus, 1.49 Gb) and male common carp (Cyprinus carpio, 1.42 Gb), to shed light on the changes leading to the stabilization of hybrids. RESULTS: We firstly identify the two subgenomes derived from the parental lineages of goldfish and common carp. We find variable unequal homoeologous recombination in somatic and germ cells of the intergeneric F1 and allotetraploid (F22 and F24) populations, reflecting high plasticity between the subgenomes, and rapidly varying copy numbers between the homoeolog genes. We also find dynamic changes in transposable elements accompanied by genome merger and duplication in the allotetraploid lineage. Finally, we observe the gradual decreases in cis-regulatory effects and increases in trans-regulatory effects along with the allotetraploidization, which contribute to increases in the symmetrical homoeologous expression in different tissues and developmental stages, especially in early embryogenesis. CONCLUSIONS: Our results reveal a series of changes in transposable elements, unequal homoeologous recombination, cis- and trans-regulations (e.g. DNA methylation), and homoeologous expression, suggesting their potential roles in mediating adaptive stabilization of regulatory systems of the nascent allotetraploid lineage. The symmetrical subgenomes and homoeologous expression provide a novel way of balancing genetic incompatibilities, providing a new insight into the early stages of allopolyploidization in vertebrate evolution.


Asunto(s)
Carpas , Cyprinidae , Animales , Cyprinidae/genética , Elementos Transponibles de ADN , Hibridación Genética , Poliploidía
3.
Genome Res ; 29(11): 1805-1815, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31649058

RESUMEN

Hybridization drives rapid speciation by shaping novel genotypic and phenotypic profiles. Genomic incompatibility and transcriptome shock have been observed in hybrids, although this is rarer in animals than in plants. Using the newly sequenced genomes of the blunt snout bream (Megalobrama amblycephala [BSB]) and the topmouth culter (Culter alburnus [TC]), we focused on the sequence variation and gene expression changes in the reciprocal intergeneric hybrid lineages (F1-F3) of BSB × TC. A genome-wide transcriptional analysis identified 145-974 expressed recombinant genes in the successive generations of hybrid fish, suggesting the rapid emergence of allelic variation following hybridization. Some gradual changes of gene expression with additive and dominance effects and various cis and trans regulations were observed from F1 to F3 in the two hybrid lineages. These asymmetric patterns of gene expression represent the alternative strategies for counteracting deleterious effects of the subgenomes and improving adaptability of novel hybrids. Furthermore, we identified positive selection and additive expression patterns in transforming growth factor, beta 1b (tgfb1b), which may account for the morphological variations of the pharyngeal jaw in the two hybrid lineages. Our current findings provide insights into the evolution of vertebrate genomes immediately following hybridization.


Asunto(s)
Alelos , Cyprinidae/genética , Hibridación Genética , Animales , Femenino , Masculino , Polimorfismo Genético , Análisis de Secuencia/métodos , Especificidad de la Especie
4.
BMC Genomics ; 22(1): 435, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34107878

RESUMEN

BACKGROUND: Formation of triploid organism is useful in genetics and breeding. In this study, autotriploid Carassius auratus (3nRR, 3n = 150) was generated from Carassius auratus red var. (RCC, 2n = 100) (♀) and autotetraploid Carassius auratus (4nRR, 4n = 200) (♂). The female 3nRR produced haploid, diploid and triploid eggs, whereas the male 3nRR was infertile. The aim of the present study was to explore fertility of potential candidate genes of 3nRR. RESULTS: Gonadal transcriptome profiling of four groups (3 females RCC (FRCC), 3 males 4nRR (M4nRR), 3 males 3nRR (M3nRR) and 3 females 3nRR (F3nRR)) was performed using RNA-SEq. A total of 78.90 Gb of clean short reads and 24,262 differentially expressed transcripts (DETs), including 20,155 in F3nRR vs. FRCC and 4,107 in M3nRR vs. M4nRR were identified. A total of 106 enriched pathways were identified through KEGG enrichment analysis. Out of the enriched pathways, 44 and 62 signalling pathways were identified in F3nRR vs. FRCC and M3nRR vs. M4nRR, respectively. A total of 80 and 25 potential candidate genes for fertility-related in F3nRR and M3nRR were identified, respectively, through GO, KEGG analyses and the published literature. Moreover, protein-protein interaction (PPI) network construction of these fertility-associated genes were performed. Analysis of the PPI networks showed that 6 hub genes (MYC, SOX2, BMP4, GATA4, PTEN and BMP2) were involved in female fertility of F3nRR, and 2 hub genes (TP53 and FGF2) were involved in male sterility of M3nRR. CONCLUSIONS: Establishment of autotriploid fish offers an ideal model to study reproductive traits of triploid fish. RNA-Seq data revealed 6 genes, namely, MYC, SOX2, BMP4, GATA4, PTEN and BMP2, involved in the female fertility of the F3nRR. Moreover, 2 genes, namely, TP53 and FGF2, were related to the male sterility of the M3nRR. These findings provide information on reproduction and breeding in triploid fish.


Asunto(s)
Carpa Dorada , Triploidía , Animales , Diploidia , Femenino , Fertilidad/genética , Carpa Dorada/genética , Gónadas , Masculino , Transcriptoma
5.
Reproduction ; 159(6): R237-R249, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32191917

RESUMEN

Distant hybridization refers to the cross between two different species or higher-ranking taxa. It is very significant if the new lineages with genetic variation, fertile ability, and improved characteristics can be established through distant hybridization. However, reproductive barriers are key limitations that must be overcome to establish fertile lineages derived from distant hybridization. In the present review, we discussed how distant hybridization is an important way to form new species by overcoming reproductive barriers and summarized effective measures to overcome reproductive barriers in order to create fertile lineages of fish distant hybridization. In addition, we described the utilization of the fish lineages derived from distant hybridization. Finally, we discussed the relationship between distant hybridization and Mendel's laws, which generally apply to the inbred hybridization. We aim to provide a comprehensive reference for the establishment of fertile fish lineages by overcoming reproductive barriers and to emphasize the significance of fish distant hybridization in the fields of evolutionary biology, reproductive biology, and genetic breeding.


Asunto(s)
Fertilidad/genética , Peces/genética , Hibridación Genética , Reproducción/genética , Animales , Cruzamiento
6.
BMC Genet ; 21(1): 35, 2020 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-32199463

RESUMEN

BACKGROUND: Autotetraploid Carassius auratus (4nRCC, 4n = 200, RRRR) was derived from the whole genome duplication of diploid red crucian carp (Carassius auratus red var.) (2nRCC, 2n = 100, RR). To investigate the genetic effects of tetraploidization, we analyzed DNA variation, epigenetic modification and gene expression changes in the Sox9a-Amh-Cyp19a1a regulatory cascade between 4nRCC and 2nRCC. RESULTS: We found that the Sox9a gene contained two variants in 2nRCC and four variants in 4nRCC. Compared with that in 2nRCC, DNA methylation in the promoter regions of the Amh and Cyp19a1a genes in 4nRCC was altered by single nucleotide polymorphism (SNP) mutations, which resulted in the insertions and deletions of CpG sites, and the methylation levels of the Sox9a, Amh and Cyp19a1a genes increased after tetraploidization. The gene expression level of the Sox9a-Amh-Cyp19a1a regulatory cascade was downregulated in 4nRCC compared with that in 2nRCC. CONCLUSION: The above results demonstrate that tetraploidization leads to significant changes in the genome, epigenetic modification and gene expression in the Sox9a-Amh-Cyp19a1a regulatory cascade; these findings increase the extant knowledge regarding the effects of polyploidization.


Asunto(s)
Aromatasa/genética , Carpa Dorada/genética , Receptores de Péptidos/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Factor de Transcripción SOX9/genética , Animales , Diploidia , Genoma/genética , Carpa Dorada/crecimiento & desarrollo , Tetraploidía , Proteínas de Pez Cebra
7.
BMC Genet ; 21(1): 56, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32456607

RESUMEN

An amendment to this paper has been published and can be accessed via the original article.

8.
BMC Genet ; 20(1): 3, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30616510

RESUMEN

BACKGROUND: Grass carp (Ctenopharyngodon idellus, GC), as the highest-output fish in China, is economically important. The production of gynogenetic grass carp (GGC) will provide important germplasm resource for producing improved GC. At present, knowledge regarding the heterologous sperm DNA in gynogenetic offspring is little. Thus, revealing paternal DNA in GGC at the molecular level would be highly significant for fish genetic breeding. RESULT: In this study, ultraviolet-treated sperm of koi carp (Cyprinus carpio haematopterus, KOC, 2n = 100), was used to activate the eggs of GC (2n = 48). Afterwards, cold shock (0-4 °C) was administered for 12 min to double the chromosomes, resulting in GGC. No significant difference (p > 0.05) was found between GGC and GC in appearance, erythrocytes size and chromosome numbers. However, at the molecular level, a specific microsatellite DNA fragment (MFW1-gynogenetic grass carp, MFW1-G) derived from the paternal parent KOC was found to be transmitted into GGC. CONCLUSIONS: For the first time, this study provided an evidence at the molecular level that the DNA fragment derived from the paternal parent occurred in GGC. This finding is of great significance for fish genetic breeding.


Asunto(s)
Carpas/genética , Carpas/fisiología , ADN/genética , Padre , Reproducción Asexuada/genética , Animales , Cromosomas/genética , Genómica , Masculino , Repeticiones de Microsatélite/genética , Reacción en Cadena de la Polimerasa
9.
Reprod Fertil Dev ; 31(2): 248-260, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30086823

RESUMEN

Spermatogenesis involves a series of cellular transformations and thousands of regulated genes. Previously, we showed that the triploid fish (3nBY) cannot produce mature spermatozoa. In the present study, evaluation of the testis microstructure revealed that germ cells of 3nBY could develop into round spermatids, but then degenerated, resulting in male infertility. In this study we comparatively analysed the testis transcriptomes from 3nBY and its diploid parent YB and identified a series of differentially expressed genes (DEGs) that were enriched in the Wnt signalling pathway and the apoptotic and ubiquitin-mediated proteolysis processes in 3nBY. Gene ontology functional analyses revealed that some DEGs in 3nBY were directly associated with the process of gamete generation, development and sperm flagellum assembly. In addition, the expression of a number of genes related to meiosis (Inhibitor Of DNA Binding 2 (ID2), Ovo Like Transcriptional Repressor 1 (OVOL1)), mitochondria (ATP1b (ATPase Na+/K+ Transporting Subunit Beta 1), ATP2a (ATPase, Ca++ Transporting, Cardiac Muscle, Slow Twitch 2), ATP5a (ATP Synthase F1 Subunit Alpha), Mitochondrially Encoded Cytochrome C Oxidase I (COX1), NADH Dehydrogenase Subunit 4 (ND4)) and chromatin structure (Histone 1 (H1), Histone 2a (H2A), Histone 2b (H2B), Histone 3 (H3), Histone 4 (H4)) was lower in the testes of 3nBY, whereas the expression of genes encoding ubiquitin (Ubiquitin Conjugating Enzymes (UBEs), Ring Finger Proteins (RNFs)) and apoptosis (CASPs (Caspase 3, Caspase 7,Caspase 8), BCLs (B-Cell Lymphoma 3, B-Cell CLL/Lymphoma 2, B Cell CLL/Lymphoma 10)) proteins involved in spermatid degeneration was higher. These data suggest that the disrupted expression of genes associated with spermatogenesis and the increased expression of mitochondrial ubiquitin, which initiates cell apoptosis, may result in spermatid degeneration in male 3nBY. This study provides information regarding the potential molecular regulatory mechanisms underlying male infertility in polyploid fish.


Asunto(s)
Infertilidad Masculina/metabolismo , Espermatogénesis/fisiología , Testículo/metabolismo , Transcriptoma , Triploidía , Animales , Peces/metabolismo , Infertilidad Masculina/genética , Masculino , Meiosis/genética , Transducción de Señal/genética , Cola del Espermatozoide/metabolismo , Espermatozoides/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(5): 1327-32, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26768847

RESUMEN

Polyploidy is much rarer in animals than in plants but it is not known why. The outcome of combining two genomes in vertebrates remains unpredictable, especially because polyploidization seldom shows positive effects and more often results in lethal consequences because viable gametes fail to form during meiosis. Fortunately, the goldfish (maternal) × common carp (paternal) hybrids have reproduced successfully up to generation 22, and this hybrid lineage permits an investigation into the genomics of hybridization and tetraploidization. The first two generations of these hybrids are diploids, and subsequent generations are tetraploids. Liver transcriptomes from four generations and their progenitors reveal chimeric genes (>9%) and mutations of orthologous genes. Characterizations of 18 randomly chosen genes from genomic DNA and cDNA confirm the chimera. Some of the chimeric and differentially expressed genes relate to mutagenesis, repair, and cancer-related pathways in 2nF1. Erroneous DNA excision between homologous parental genes may drive the high percentage of chimeric genes, or even more potential mechanisms may result in this phenomenon. Meanwhile, diploid offspring show paternal-biased expression, yet tetraploids show maternal-biased expression. These discoveries reveal that fast and unstable changes are mainly deleterious at the level of transcriptomes although some offspring still survive their genomic abnormalities. In addition, the synthetic effect of genome shock might have resulted in greatly reduced viability of 2nF2 hybrid offspring. The goldfish × common carp hybrids constitute an ideal system for unveiling the consequences of intergenomic interactions in hybrid vertebrate genomes and their fertility.


Asunto(s)
Cruzamientos Genéticos , Carpa Dorada/genética , Ploidias , Animales , Cromosomas , Perfilación de la Expresión Génica , Hibridación Fluorescente in Situ
11.
BMC Genomics ; 19(1): 517, 2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-29969984

RESUMEN

BACKGROUND: Hybridization and polyploidization are regarded as the major driving forces in plant speciation, diversification, and ecological adaptation. Our knowledge regarding the mechanisms of duplicated-gene regulation following genomic merging or doubling is primarily derived from plants and is sparse for vertebrates. RESULTS: We successfully obtained an F1 generation (including allodiploid hybrids and triploid hybrids) from female Megalobrama amblycephala Yih (BSB, 2n = 48) × male Xenocypri davidi Bleeker (YB, 2n = 48). The duplicated-gene expression patterns of the two types of hybrids were explored using RNA-Seq data. In total, 5.44 × 108 (69.32 GB) clean reads and 499,631 assembled unigenes were obtained from the testis transcriptomes. The sequence similarity analysis of 4265 orthologs revealed that the merged genomes were dominantly expressed in different ploidy hybrids. The differentially expressed genes in the two types of hybrids were asymmetric compared with those in both parents. Furthermore, the genome-wide expression level dominance (ELD) was biased toward the maternal BSB genome in both the allodiploid and triploid hybrids. In addition, the dosage-compensation mechanisms that reduced the triploid expression levels to the diploid state were determined in the triploid hybrids. CONCLUSIONS: Our results indicate that divergent genomes undergo strong interactions and domination in allopolyploid offspring. Genomic merger has a greater effect on the gene-expression patterns than genomic doubling. The various expression mechanisms (including maternal effect and dosage compensation) in different ploidy hybrids suggest that the initial genomic merger and doubling play important roles in polyploidy adaptation and evolution.


Asunto(s)
Quimera/genética , Cyprinidae/genética , Compensación de Dosificación (Genética)/genética , Herencia Materna/genética , Animales , Femenino , Masculino , Poliploidía , ARN/química , ARN/aislamiento & purificación , ARN/metabolismo , Análisis de Secuencia de ARN , Testículo/metabolismo , Transcriptoma
12.
Biol Reprod ; 94(2): 35, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26674567

RESUMEN

The generation of diploid spermatozoa is essential for the continuity of tetraploid lineages. The DNA content of diploid spermatozoa from allotetraploid hybrids of red crucian carp and common carp was nearly twice as great as that of haploid spermatozoa from common carp, and the durations of rapid and slow progressive motility were longer. We performed comparative proteomic analyses to measure variations in protein composition between diploid and haploid spermatozoa. Using two-dimensional electrophoresis followed by liquid chromatography tandem mass spectrometry, 21 protein spots that changed in abundance were analyzed. As the common carp and the allotetraploid hybrids are not fully sequenced organisms, we identified proteins by Mascot searching against the National Center for Biotechnology Information non-redundant (NR) protein database for the zebrafish (Danio rerio), and verified them against predicted homologous proteins derived from transcriptomes of the testis. Twenty protein spots were identified successfully, belonging to four gene ontogeny categories: cytoskeleton, energy metabolism, the ubiquitin-proteasome system, and other functions, indicating that these might be associated with the variation in diploid spermatozoa. This categorization of variations in protein composition in diploid spermatozoa will provide new perspectives on male polyploidy. Moreover, our approach indicates that transcriptome data are useful for proteomic analyses in organisms lacking full protein sequences.


Asunto(s)
Carpas/fisiología , Diploidia , Poliploidía , Espermatozoides/fisiología , Testículo/fisiología , Animales , Masculino , Proteómica , Espermatozoides/citología , Testículo/citología
13.
BMC Genet ; 17(1): 136, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27717311

RESUMEN

BACKGROUND: Interspecies hybridization is widely used to achieve heterosis or hybrid vigor, which has been observed and harnessed by breeders for centuries. Natural allopolyploid hybrids generally exhibit more superior heterosis than both the diploid progenies and their parental species. However, polyploid formation processes have been long ignored, the genetic basis of heterosis in polyploids remains elusive. RESULTS: In the present study, triploid hybrids had been demonstrated to contain two sets of chromosomes from mother species and one set from father species. Cellular polyploidization process in the embryos had been traced. The triploid hybrids might be formed by failure formation of the second polarized genome during the second meiosis stage. Four spindle centers were observed in anaphase stage of the first cell division. Three spindle centers were observed in side of cell plate after the first cell division. The 5S rDNA genes of four types of groupers were cloned and analyzed. The diploid and triploid hybrids had been proved to contain the tandem chimera structures which were recombined by maternal and paternal monomer units. The results indicated that genome re-fusion had occurred in the hybrid progenies. To further elucidate the genetic patterns of diploid and triploid hybrids, fluorescence chromosome location had been carried out, maternal 5S gene (M-386) were used as the probe. The triploid hybrids contained fewer fluorescence loci numbers than the maternal species. The results indicated that participation of paternal 5S gene in the triploid hybrid genome had degraded the match rates of M-386 probe. CONCLUSIONS: Our study is the first to investigate the cellular formation processes of natural allopolyploids in hybrid fish, the cellular polyploidization process may be caused by failure formation of the second polarized genome during the meiosis, and our results will provide the molecular basis of hybrid vigor in interspecies hybridization.


Asunto(s)
Diploidia , Peces/genética , Vigor Híbrido/genética , Hibridación Genética , Triploidía , Animales , Mapeo Cromosómico , Desarrollo Embrionario/genética , Femenino , Peces/embriología , Cariotipo , Cariotipificación , Masculino , ARN Ribosómico 5S/genética
14.
BMC Genet ; 16: 26, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25879826

RESUMEN

BACKGROUND: The offspring with 100 chromosomes (abbreviated as GRCC) have been obtained in the first generation of Carassius auratus red var. (abbreviated as RCC, 2n = 100) (♀) × Megalobrama amblycephala (abbreviated as BSB, 2n = 48) (♂), in which the females and unexpected males both are found. Chromosomal and karyotypic analysis has been reported in GRCC which gynogenesis origin has been suggested, but lack genetic evidence. RESULT: Fluorescence in situ hybridization with species-specific centromere probes directly proves that GRCC possess two sets of RCC-derived chromosomes. Sequence analysis of the coding region (5S) and adjacent nontranscribed spacer (abbreviated as NTS) reveals that three types of 5S rDNA class (class I; class II and class III) in GRCC are completely inherited from their female parent (RCC), and show obvious base variations and insertions-deletions. Fluorescence in situ hybridization with the entire 5S rDNA probe reveals obvious chromosomal loci (class I and class II) variation in GRCC. CONCLUSIONS: This paper provides directly genetic evidence that GRCC is gynogenesis origin. In addition, our result is also reveals that distant hybridization inducing gynogenesis can lead to sequence and partial chromosomal loci of 5S rDNA gene obvious variation.


Asunto(s)
Peces/genética , Variación Genética , Hibridación Genética , ARN Ribosómico 5S/genética , Animales , Secuencia de Bases , Mapeo Cromosómico , Cromosomas , Femenino , Sitios Genéticos , Hibridación Fluorescente in Situ , Cariotipificación , Masculino , Datos de Secuencia Molecular , ARN Ribosómico 5S/química , Alineación de Secuencia
15.
BMC Genet ; 16: 68, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26108606

RESUMEN

BACKGROUND: Androgenesis is a unique and rarely encountered reproductive mode in which the offspring only inherit the paternal nuclear genome, resulting in relatively few viable individuals. RESULTS: In this study, a super male (YY) crucian carp was obtained by androgenesis with the diploid sperm of autotetraploid crucian carp (4n = 200). Flow cytometry assay confirmed the fish was diploid. The scanning electron microscopy and flow cytometry analysis results of sperm revealed that the YY crucian carp produced unreduced diploid sperm. To prove the special reproductive characteristic and homozygosity of the YY crucian carp, three rounds of hybridization experiments were performed. First, self-crossing between female androgenic progenies and YY crucian carp generated all male tetraploids. Then, hybridization of female red crucian carp (2n = 100) and female autotetraploid fish (4n = 200) with YY crucian carp produced all male triploids and all male tetraploids, respectively. CONCLUSIONS: This is the first time reported producing a viable diploid homozygous YY fish with unreduced diploid sperm of the autotetraploid fish, which were derived from distant hybridization. These results will not only help explaining the sex determination mechanism in teleost fish, but also play a significant role in genetic breeding in aquaculture.


Asunto(s)
Carpas/genética , Espermatozoides/metabolismo , Tetraploidía , Triploidía , Animales , Carpas/anatomía & histología , Cruzamientos Genéticos , Diploidia , Femenino , Hibridación Genética , Masculino , Espermatozoides/ultraestructura
16.
Biol Reprod ; 91(4): 93, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25165120

RESUMEN

The establishment of the tetraploid organism is difficult but useful in genetics and breeding. In the present study, we have artificially established an autotetraploid fish line (F2-F8) derived from the distant hybridization of Carassius auratus red var. (RR, 2n = 100) (female) × Megalobrama amblycephala (BB, 2n = 48) (male). The autotetraploid line (F2-F8) possess four sets of chromosomes from red crucian carp (RRRR, 4n = 200) and produce diploid ova and diploid sperm, which maintains the formation of the autotetraploid line. The F2 of the autotetraploid fish result from the fertilization of the autodiploidy diploid eggs and diploid sperm from the females and males of F1 hybrids (RRBB, 4n = 148), which exhibit abnormal chromosome behavior during meiosis as revealed by gynogenesis and backcrossing. This is the first report concerning the establishment of an autotetraploid fish line derived from distant hybridization. The autotetraploid fish line provides an important gamete source for the production of triploids and tetraploids. The autotetraploid fish line also provides an ideal system to investigate the poorly understood mechanisms that drive diploidization in autotetraploids and to study the hybrid progenies' characteristics, including the appearance of new traits that promote a diversity of traits and facilitate adaptation.


Asunto(s)
Cyprinidae/genética , Hibridación Genética , Ploidias , Animales , Cyprinidae/fisiología , ADN/genética , Femenino , Hibridación Fluorescente in Situ , Cariotipo , Masculino
17.
BMC Genet ; 15: 95, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25178799

RESUMEN

BACKGROUND: Allopolyploids generally undergo bivalent pairing at meiosis because only homologous chromosomes pair up. On the other hand, several studies have documented abnormal chromosome behavior during mitosis and meiosis in allopolyploids plants leading to the production of gametes with complete paternal or maternal chromosomes. Polyploidy is relatively rare in animals compared with plants; thus, chromosome behavior at meiosis in the allopolyploid animals is poorly understood. RESULTS: Tetraploid hybrids (abbreviated as 4nRB) (4n=148, RRBB) of Carassius auratus red var. (abbreviated as RCC) (2n=100, RR) (♀)×Megalobrama amblycephala (abbreviated as BSB) (2n=48, BB) (♂) generated gametes of different size. To test the genetic composition of these gametes, the gynogenetic offspring and backcross progenies of 4nRB were produced, and their genetic composition were examined by chromosome analysis and FISH. Our results suggest that 4nRB can produce several types of gametes with different genetic compositions, including allotetraploid (RRBB), autotriploid (RRR), autodiploid (RR), and haploid (R) gametes. CONCLUSIONS: This study provides direct evidence of abnormal chromosome behavior during meiosis in an allotetraploid fish.


Asunto(s)
Quimera/genética , Cyprinidae/genética , Carpa Dorada/genética , Meiosis , Tetraploidía , Animales , Cromosomas , Cruzamientos Genéticos , Femenino , Hibridación Fluorescente in Situ , Cariotipificación , Masculino , Óvulo/citología , Espermatozoides/citología
18.
Front Endocrinol (Lausanne) ; 15: 1336679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410696

RESUMEN

Introduction: In the Dongting water system, the Carassius auratus (Crucian carp) complex is characterized by the coexistence of diploid forms (2n=100, 2nCC) and polyploidy forms. The diploid (2nCC) and triploid C.auratus (3n=150, 3nCC) had the same fertility levels, reaching sexual maturity at one year. Methods: The nucleotide sequence, gene expression, methylation, and immunofluorescence of the gonadotropin releasing hormone 2(Gnrh2), Gonadotropin hormone beta(Gthß), and Gonadotropin-releasing hormone receptor(Gthr) genes pivotal genes of the hypothalamic-pituitary-gonadal (HPG) axis were analyzed. Results: The analysis results indicated that Gnrh2, follicle-stimulating hormone receptor(Fshr), and Lethal hybrid rescue(Lhr) genes increased the copy number and distinct structural differentiation in 3nCC compared to that in 2nCC. The transcript levels of HPG axis genes in 3nCC were higher than 2nCC (P<0.05), which could promote the production and secretion of sex steroid hormones conducive to the gonadal development of 3nCC. Meanwhile, the DNA methylation levels in the promoter regions of the HPG axis genes were lower in 3nCC than in 2nCC. These results suggested that methylation of the promoter region had a potential regulatory effect on gene expression after triploidization. Immunofluorescence showed that the localization of the Fshß, Lhß, and Fshr genes between 3nCC and 2nCC remained unchanged, ensuring the normal expression of these genes at the corresponding sites after triploidization. Discussion: Relevant research results provide cell and molecular biology evidence for normal reproductive activities such as gonad development and gamete maturation in triploid C. auratus, and contribute to further understanding of the genetic basis for fertility restoration in triploid C. auratus.


Asunto(s)
Carpas , Carpa Dorada , Animales , Carpa Dorada/genética , Triploidía , Eje Hipotálamico-Pituitario-Gonadal , Ploidias , Hormona Liberadora de Gonadotropina/genética
19.
Zool Res ; 45(2): 381-397, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38485507

RESUMEN

The autotetraploid Carassius auratus (4nRR, 4 n=200, RRRR) is derived from whole-genome duplication of Carassius auratus red var. (RCC, 2 n=100, RR). In the current study, we demonstrated that chromatophores and pigment changes directly caused the coloration and variation of 4nRR skin (red in RCC, brownish-yellow in 4nRR). To further explore the molecular mechanisms underlying coloration formation and variation in 4nRR, we performed transcriptome profiling and molecular functional verification in RCC and 4nRR. Results revealed that scarb1, associated with carotenoid metabolism, underwent significant down-regulation in 4nRR. Efficient editing of this candidate pigment gene provided clear evidence of its significant role in RCC coloration. Subsequently, we identified four divergent scarb1 homeologs in 4nRR: two original scarb1 homeologs from RCC and two duplicated ones. Notably, three of these homeologs possessed two highly conserved alleles, exhibiting biased and allele-specific expression in the skin. Remarkably, after precise editing of both the original and duplicated scarb1 homeologs and/or alleles, 4nRR individuals, whether singly or multiply mutated, displayed a transition from brownish-yellow skin to a cyan-gray phenotype. Concurrently, the proportional areas of the cyan-gray regions displayed a gene-dose correlation. These findings illustrate the subfunctionalization of duplicated scarb1, with all scarb1 genes synergistically and equally contributing to the pigmentation of 4nRR. This is the first report concerning the functional differentiation of duplicated homeologs in an autopolyploid fish, substantially enriching our understanding of coloration formation and change within this group of organisms.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Carpa Dorada/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/veterinaria , Pigmentación/genética , Genoma , Neoplasias Renales/genética , Neoplasias Renales/veterinaria
20.
BMC Genet ; 14: 110, 2013 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-24267392

RESUMEN

BACKGROUND: Hybridization is a useful strategy to alter the genotypes and phenotypes of the offspring. It could transfer the genome of one species to another through combing the different genome of parents in the hybrid offspring. And the offspring may exhibit advantages in growth rate, disease resistance, survival rate and appearance, which resulting from the combination of the beneficial traits from both parents. RESULTS: Diploid and triploid hybrids of female grass carp (Ctenopharyngodon idellus, GC, Cyprininae, 2n = 48) × male blunt snout bream (Megalobrama amblycephala, BSB, Cultrinae, 2n = 48) were successfully obtained by distant hybridization. Diploid hybrids had 48 chromosomes, with one set from GC and one set from BSB. Triploid hybrids possessed 72 chromosomes, with two sets from GC and one set from BSB.The morphological traits, growth rates, and feeding ecology of the parents and hybrid offspring were compared and analyzed. The two kinds of hybrid offspring exhibited significantly phenotypic divergence from GC and BSB. 2nGB hybrids showed similar growth rate compared to that of GC, and 3nGB hybrids significantly higher results. Furthermore, the feeding ecology of hybrid progeny was omnivorous.The 5S rDNA of GC, BSB and their hybrid offspring were also cloned and sequenced. There was only one type of 5S rDNA (designated type I: 180 bp) in GC and one type of 5S rDNA (designated type II: 188 bp) in BSB. However, in the hybrid progeny, diploid and triploid hybrids both inherited type I and type II from their parents, respectively. In addition, a chimera of type I and type II was observed in the genome of diploid and triploid hybrids, excepting a 10 bp of polyA insertion in type II sequence of the chimera of the diploid hybrids. CONCLUSIONS: This is the first report of diploid and triploid hybrids being produced by crossing GC and BSB, which have the same chromosome number. The obtainment of two new hybrid offspring has significance in fish genetic breeding. The results illustrate the effect of hybridization and polyploidization on the organization and variation of 5S rDNA in hybrid offspring.


Asunto(s)
Carpas/genética , Cyprinidae/genética , Diploidia , Genoma , Hibridación Genética , ARN Ribosómico 5S/genética , Triploidía , Animales , Secuencia de Bases , Cruzamiento , Cromosomas , ADN Ribosómico/análisis , Femenino , Cariotipificación , Masculino , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA