Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Methods ; 15(25): 3034-3042, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37310403

RESUMEN

Bilirubin, a tetrapyrrole compound metabolized by heme, is an important biomarker for diagnosis and prognosis of patients with liver diseases. Highly sensitive detection of bilirubin is essential for disease prevention and treatment. In recent years, silicon nanoparticles (SiNPs) have received intense attention due to their excellent optical properties and environmental friendliness. In this paper, water-soluble yellow-green fluorescent SiNPs were synthesized by a mild water bath method using 2-aminophenylboronic acid hydrochloride as the reducing agent and 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (AEEA) as the silicon source. The preparation process does not require high temperature, high pressure and complex modifications. The SiNPs possessed excellent photostability and good water dispersibility. It was found that the fluorescence of SiNPs at 536 nm could be significantly quenched by bilirubin. By using SiNPs as a fluorescent probe, a novel fluorescence method for sensitive detection of bilirubin was established with a wide linear range of 0.05-75 µM and a limit of detection (LOD) of 16.67 nM. The detection mechanism was mainly due to the internal filtration effect (IFE). More significantly, the established method could successfully determine the contents of bilirubin in biological samples with good recoveries.


Asunto(s)
Nanopartículas , Silicio , Humanos , Bilirrubina , Espectrometría de Fluorescencia , Agua
2.
ACS Omega ; 8(16): 14499-14508, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37125092

RESUMEN

In this work, blue fluorescent silicon nanoparticles (SiNPs) were prepared by a simple one-step hydrothermal method using (3-aminopropyl) triethoxy silane (APTES) and eriochrome black T as raw materials. The SiNPs showed favorable water solubility, thermal stability, pH stability, salt tolerance, and photobleaching resistance. At an excitation wavelength of 376 nm, the SiNPs emitted bright blue fluorescence at 460 nm. In the presence of vitamin B2 (VB2), the fluorescence intensity (FL intensity) of the SiNPs at 460 nm decreased obviously, and a new peak appeared at 521 nm. Based on this, a novel ratiometric fluorescence method was established for VB2 detection. There was a good linear relationship between the fluorescence intensity ratio (F 521/F 460) and VB2 concentration from 0.5 to 60 µM with a detection limit of 135 nM. This method was successfully applied to detect VB2 content in the samples of vitamin B2 drugs and beverages. Additionally, a simple paper sensor based on the SiNPs was designed to visualize detection of VB2. With the support of color recognition software on a smartphone, the visual quantitative analysis of VB2 was realized, ranging from 40 to 800 µM.

3.
ACS Omega ; 7(32): 28588-28596, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35990497

RESUMEN

In this work, water-soluble fluorescent silicon nanoparticles (SiNPs) were prepared by one-pot hydrothermal method using 3-(2-aminoethylamino)propyldimethoxymethylsilane (AEAPDMMS) as a silicon source and amidol as a reducing agent. The prepared SiNPs showed bright green fluorescence, excellent stability against photobleaching, salt tolerance, temperature stability, and good water solubility. Due to the internal filtration effect (IFE), rutin could selectively quench the fluorescence of the SiNPs. Based on such phenomena, a highly sensitive fluorescence method was established for rutin detection. The linear range and limit of detection (LOD) were 0.05-400 µM and 15.2 nM, respectively. This method was successfully applied to detect rutin in the samples of rutin tablets, Sophora japonica, fry Sophora japonica, and S. japonica carbon with satisfactory recovery.

4.
Anal Methods ; 13(3): 390-398, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33406173

RESUMEN

Chromium (Cr(vi)), a highly toxic metal-oxyanion which is carcinogenic and mutagenic to humans, is a severe environmental pollutant. Developing simple methods for sensitive and selective detection of Cr(vi) is of great significance. In this work, fluorescent silicon nanoparticles (SiNPs) with good water solubility were facilely synthesized via a one-step hydrothermal method by using (3-aminopropyl)triethoxysilane (APTES) as the silicon source and natural antioxidant quercetin as the reducing agent. The obtained SiNPs displayed good thermostability, salt-tolerance and photo-stability. The as-prepared SiNPs exhibited bright blue emission at 437 nm under excitation at 362 nm, allowing them to be developed as a fluorescent probe for detection of Cr2O72-. Significantly, the fluorescence of the SiNPs could be remarkably quenched by Cr2O72-via the internal filtering effect (IFE). Based on this phenomenon, a novel fluorescence method for detection of Cr2O72- was established. A good linear relationship was obtained from 0.5 to 100 µM with a limit of detection (based on 3 s/k, LOD) of 180 nM. The proposed fluorescence method was successfully applied to the detection of Cr2O72- in tap water. Moreover, a fluorescent filter paper sensor was developed for the visual detection of Cr2O72-, providing a valuable platform for Cr2O72- sensing in a convenient way.

5.
Anal Methods ; 13(42): 5025-5034, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34644717

RESUMEN

Curcumin, an active ingredient in Curcuma longa, which possesses good biological and pharmacological activities, is effective in treating many diseases. Developing simple and sensitive methods for the detection of curcumin is of great significance. In this study, novel water-dispersible silicon quantum dots (SiQDs), which can sensitively respond to curcumin through fluorescent and colorimetric dual modes were synthesized via a one-step hydrothermal treatment of N-[3-(trimethoxysilyl) propyl]-ethylenediamine (DAMO) and p-phenylenediamine. The fluorescence of SiQDs could be remarkably quenched by curcumin via the inner filter effect (IFE) and static quenching effect (SQE). A good linear relationship was obtained in the range of 0.25-75 µM with a detection limit of 91 nM. More interestingly, curcumin could also be visually detected using SiQDs via an obvious color change of the solution from pale yellow to orange-red, which allows the establishment of a sensitive colorimetric method for curcumin detection in the linear range of 0.05-57.5 µM with a detection limit of 32 nM. The proposed method was successfully applied to detect curcumin in health care products and spices. Notably, to realize rapid and convenient visual detection of curcumin, a paper sensor was also fabricated.


Asunto(s)
Curcumina , Puntos Cuánticos , Colorimetría , Colorantes Fluorescentes , Límite de Detección , Silicio , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA