RESUMEN
AIMS: This study aimed to investigate the protective effects of moxibustion on ovarian dysfunction in rats with cyclophosphamide (Cy)-induced premature ovarian insufficiency (POI). It also aimed at revealing its potential mechanisms and emphasizing its role in mitigating the mitochondrial dysfunction and NLRP3 inflammatory activation. MATERIALS AND METHODS: POI models were established by the intraperitoneal administration of Cy using female Sprague-Dawley rats. Moxibustion (BL23 or CV4, CV8) was used to treat POI models for fifteen days. Vaginal smears, enzyme-linked immunosorbent assay, hematoxylin-eosin, tunnel staining, flow cytometry analysis, immunohistochemistry staining, qRT-PCR, and western blotting were conducted to evaluate the ovarian function, mitochondrial dysfunction, and NLRP3 inflammatory activation in this study. KEY FINDINGS: Moxibustion could improve the disorder of the estrous cycles and reproductive hormone levels, promote follicular growth, reduce the number of atresia follicles, and alleviate the apoptosis of ovarian granulosa cells (GCs) in rats with POI. Furthermore, moxibustion mitigated the mitochondrial damage, reversed the elevated serum levels of IL-18 and IL-1ß, and decreased their protein expression in the ovaries of rats with POI. Moxibustion significantly inhibited the expression of the mRNAs and proteins of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), caspase 1, and gasdermin D (GSDMD) in the ovaries of rats with POI. SIGNIFICANCE: These results supported that moxibustion may ameliorate Cy-induced POI by mitigating the mitochondrial dysfunction and NLRP3 inflammatory activation. Targeted treatment of mitochondrial damage and NLRP3 inflammatory activation may be a novel therapeutic strategy for POI.