Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biochem Genet ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280152

RESUMEN

The feather growth rate in chickens included early and late feathering. We attempted to characterize the genes and pathways associated with the feather growth rate in chickens that are not in agreement with Mendelian inheritance. Gene expression profiles in the hair follicle tissues of late-feathering cocks (LC), early-feathering cocks (EC), late-feathering hens (LH), and early-feathering hens (EH) were acquired using RNA sequencing (RNA-seq), mass spectrometry (MS), and quantitative reverse transcription PCR (qRT­PCR). A total of 188 differentially expressed genes (DEGs) were ascertained in EC vs. LC and 538 DEGs were identified in EH vs. LH. We observed that 14 up-regulated genes and 9 down-regulated genes were screened both in EC vs. LC and EH vs. LH. MS revealed that 41 and 138 differentially expressed proteins (DEPs) were screened out in EC vs. LC and EH vs. LH, respectively. Moreover, these DEGs and DEPs were enriched in multiple feather-related pathways, including JAK-STAT, MAPK, WNT, TGF-ß, and calcium signaling pathways. qRT-PCR assay showed that the expression of WNT8A was decreased in LC compared with EC, while ALK and GRM4 expression were significantly up-regulated in EH relative to LH. This study helps to elucidate the potential mechanism of the feather growth rate in chickens that do not conform to genetic law.

2.
J Cell Physiol ; 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37218742

RESUMEN

Skeletal muscle can undergo a regenerative process in response to injury or disease to maintain muscle quality and function. Myogenesis depends on the proliferation and differentiation of myoblasts, and miRNAs can maintain the balance between them by precisely regulating many key factors in the myogenic network. Here, we found that miR-136-5p was significantly upregulated during the proliferation and differentiation of C2C12 cells. We demonstrate that miR-136-5p acts as a myogenic negative regulator during the development of mouse C2C12 myoblasts. In terms of mechanism, miR-136-5p inhibits the formation of ß-catenin/LEF/TCF DNA-binding factor transcriptional regulatory complex by targeting FZD4, a gating protein in the Wnt signaling pathway, thereby enhancing downstream myogenic factors and finally promoting myoblast proliferation and differentiation. In addition, in BaCl2 -induced muscle injury mouse model, miR-136-5p knockdown accelerated the regeneration of skeletal muscle after injury, and further led to the improvement of gastrocnemius muscle mass and muscle fiber diameter, while being suppressed by shFZD4 lentivirus infection. In summary, these results demonstrate the essential role of miR-136-5p/FZD4 axis in skeletal muscle regeneration. Given the conservation of miR-136-5p among species, miR-136-5p may be a new target for treating human skeletal muscle injury and improving the production of animal meat products.

3.
Anim Biotechnol ; 34(7): 2449-2458, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35792779

RESUMEN

Granulosa cell (GC) apoptosis is the main trigger of follicular atresia. MicroRNAs (miRNAs) are 18-22 nt RNAs whose function is primarily determined by their extended seed region and are considered to be involved in the biological functions of follicular development, including follicular atresia, folliculogenesis, and oogenesis. MiR-138-5p is known to act on chicken GCs. In this study, we found that miR-138-5p was enriched in reproductive organs, such as the uterus and ovaries. To examine whether miR-138-5p could regulate the biological process of GCs, miR-138-5p was examined by transfection of cells with a mimic or inhibitor of miR-138-5p. Expression levels of caspase-3 and caspase-9 mRNA and protein were markedly increased or decreased after transfection of the mimic or inhibitor, respectively. Furthermore, following miR-138-5p inhibition, SIRT1, one of the target genes of miR-138-5p, was found to increase the mRNA, which is correlated with the increased levels of BCL2 expression, an anti-apoptotic gene in the chicken GCs. These results suggest that miR-138-5p promotes apoptosis in chicken GCs by targeting SIRT1.


Asunto(s)
Células de la Granulosa , MicroARNs , Femenino , Animales , Células de la Granulosa/metabolismo , Pollos/genética , Pollos/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Atresia Folicular/genética , MicroARNs/genética , MicroARNs/metabolismo , Apoptosis/genética , ARN Mensajero/metabolismo , Proliferación Celular/genética
4.
Anim Biotechnol ; 34(7): 3144-3153, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36306258

RESUMEN

Broodiness, a maternal behavior, is accompanied by the atresia of follicles and the serious degradation of poultry reproductive performance. The comparison of follicles between brooding and laying hens is usually an ideal model for exploring the regulation mechanism of follicle atresia. In this study, we selected three brooding hens and three laying hens to collect their follicles for whole transcriptome sequencing. The results demonstrated different expression patterns between the follicles of brooding hens and laying hens. In the top 10 differentially expressed genes with the highest expression, MMP10 was relatively low expressed in the follicles of brooding hens, but other nine genes were relatively highly expressed, including LRR1, RACK1, SPECC1L, ABHD2, COL6A3, RPS17, ATRN, BIRC6, PGAM1 and SPECC1L. While miR-21-3p, miR-146a-5p, miR-142-5p and miR-1b-3p were highly expressed in the follicles of brooding hen, miR-106-5p, miR-451, miR-183, miR-7, miR-2188-5p and miR-182-5p were lowly expressed in brooding hen. In addition, we identified 124 lncRNAs specifically expressed in the follicles of brooding hens and 147 lncRNAs specifically expressed in the follicles of laying hens. Our results may provide a theoretical basis for further exploration of the molecular mechanism of broodiness in broilers.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Femenino , Animales , Pollos/genética , ARN Largo no Codificante/genética , Atresia Folicular , Perfilación de la Expresión Génica/veterinaria , MicroARNs/genética , Transcriptoma/genética
5.
Exp Cell Res ; 407(2): 112833, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34536390

RESUMEN

The yield and quality of the skeletal muscle are important economic traits in livestock and poultry production. The musculoskeletal embryonic nuclear protein 1 (MUSTN1) gene has been shown to be associated with embryonic development, postnatal growth, bone and skeletal muscle regeneration; however, its function in the skeletal muscle development of chicken remains unclear. Therefore, in this study, we observed that the expression level of MUSTN1 increased in conjunction with the proliferation of chicken skeletal muscle satellite cells (SMSCs). Knockdown of MUSTN1 in SMSCs downregulated the expression of cell proliferation genes as Pax7, CDK-2 and differentiation-relate genes including MyoD, MyoG, MyHC and MyH1B, whereas it upregulates the expression of cell apoptosis gene (Caspase-3) (P < 0.05). However, the combined analysis of CCK-8 and EdU showed that the cell vitality and EdU-positive cells of the si-MUSTN1 transfected group were significantly lower than those of the negative siRNA group (P < 0.05). In addition, the knockdown of MUSTN1 significantly increased the cell population in the G0/G1 phase and significantly decreased the cell population in the G2/M phase (P < 0.05), whereas the overexpression of MUSTN1 showed opposite effect. Taken together, our findings indicates that MUSTN1 is an important molecular factor that is responsible for regulating muscle growth and development in chickens, particularly, proliferation and differentiation of SMSCs.


Asunto(s)
Apoptosis , Diferenciación Celular , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos , Proteínas Nucleares/metabolismo , Células Satélite del Músculo Esquelético/citología , Animales , Pollos , MicroARNs , Proteínas Nucleares/genética , Células Satélite del Músculo Esquelético/metabolismo
6.
Anim Biotechnol ; 33(5): 884-896, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33342337

RESUMEN

Previous studies have shown that the feather growth rate of chicks is determined by two alleles located on the sex chromosome Z; however, in chicken production, feathering is usually not consistently controlled by the sex chromosome. To identify whether the feathering rate is related to autosomal inheritance, whole-genome resequencing was performed in eight chickens with slow- and fast-feathering rate. A total of 54,984 autosomal single nucleotide polymorphisms (SNPs) were identified, including 393 and 376 exonic SNPs in slow-feathering and fast-feathering chickens, respectively. Mutated genes were mainly involved in response to stimuli and growth and reproduction processes. Mutated genes related to slow-feathering rate were mainly involved in wingless-type MMTV integration site signaling pathway and mitogen-activated protein kinase signaling pathway, whereas mutated genes associated with fast-feathering rate were primarily enriched in autophagy, calcium signaling pathway, extracellular matrix-receptor interaction, and Focal adhesion processes. Importantly, two SNPs, involved in feather development, were found in the exonic regions of Wnt signaling genes. These results shed new light on the relationship between genetic mutation and feather growth rate from the perspective of autosomal inheritance and may have economic significance in chicken breeding.


Asunto(s)
Pollos , Polimorfismo de Nucleótido Simple , Alelos , Animales , Pollos/genética , Plumas , Proteínas Quinasas Activadas por Mitógenos/genética , Polimorfismo de Nucleótido Simple/genética
7.
J Anim Physiol Anim Nutr (Berl) ; 106(3): 575-585, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34338348

RESUMEN

Probiotics are expected to be an ideal alternative for antibiotics in the poultry industry. This study aimed to investigate the effect of Lactobacillus plantarum on growth traits, slaughter performance, serum markers and intestinal bacterial community of Daheng broilers. A total of 2400 healthy one-day-old Daheng broilers were randomly divided into 5 groups with 6 replicates per group and 40 individuals per replicate. Birds in control group were fed a basal diet, and others were fed basal diets supplemented with 105 , 106 , 107 and 108  CFU/kg Lactobacillus plantarum, respectively. It turned out that adding Lactobacillus plantarum to diet could significantly improve the serum immune performance of broilers (p < 0.05), enhance the antioxidant capacity to a certain extent (p > 0.05), but had no significant effect on growth traits and slaughter performance. Moreover, Lactobacillus plantarum could improve the diversity of intestinal bacterial community, but with the increase of addition concentration, the diversity would gradually decrease. In conclusion, Lactobacillus plantarum can be used as feed additive in broiler production, but whether it is more effective than antibiotics needs further investigation.


Asunto(s)
Lactobacillus plantarum , Probióticos , Alimentación Animal/análisis , Animales , Antibacterianos/farmacología , Biomarcadores , Pollos , Dieta/veterinaria , Probióticos/farmacología
8.
J Anim Physiol Anim Nutr (Berl) ; 104(3): 867-875, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31957920

RESUMEN

Sichuan mountainous black-bone (SMB) chicken is a small-sized black-feathered chicken breed with low amount of meat, while Dahen (DH) chicken has a larger body size and a faster growth rate. MicroRNAs (miRNAs) are involved in various physiological processes, but their role in chicken muscle growth remains unclear. We aimed to investigate the miRNAs and pathways participating in the muscle growth of chicken. MiRNA profiles of four SMB chickens and four DH chickens were detected by small RNA sequencing. A total of 994 known miRNAs were identified, among which gga-miR-1a-3p, gga-miR-148-3p and gga-miR-133a-3p exhibited the highest enrichment in both breeds of chickens. Thirty-two miRNAs were differently expressed between SMB and DH chickens. The differently expressed miRNAs were mainly associated with fatty acid metabolism, immunity and MAPK activation-related processes. Kyoto encyclopaedia of genes and genomes (KEGG) analysis showed that miRNAs were involved in the immunity-related and MAPK signalling pathways. Moreover, miR-204 was downregulated in DH chicken compared with SMB chicken, and significantly inhibited the expression of MAP3K13, which is involved in the MAPK pathway. It was confirmed through luciferase reporter assays that miR-204 specifically inhibited the activity of MAP3K13. Our results helped demonstrate the potential molecular mechanisms of muscle growth in chickens and provide valuable information for chicken breeding.


Asunto(s)
Pollos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , MicroARNs/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Animales , Línea Celular , Pollos/genética , Regulación hacia Abajo , Fibroblastos , Genoma , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , MicroARNs/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
9.
Anim Biotechnol ; 30(3): 233-241, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30601081

RESUMEN

Objective: The goal of this study was to investigate the mechanisms of muscle growth and development of three chicken breeds. Participants: Eighteen chickens, including three different breeds with different growth speeds (White Broiler, Daheng, and Commercial Layers of Roman), were used. Methods: Total RNA from breast muscle of these chickens was subjected to a gene expression microarray. Differentially expressed genes (DEGs) were screened and functional enrichment analysis was performed using DAVID. Seven DEGs were confirmed by quantitative reverse transcription PCR. Results: Overall, 8,398 DEGs were found among the different lines. The DEGs between each two lines that were unique for a developmental stage were greater than those that were common during all stages. Functional analysis revealed that DEGs across the entire developmental process were primarily involved in positive cell proliferation, growth, cell differentiation, and developmental processes. Genes involved in muscle regulation, muscle construction, and muscle cell differentiation were upregulated in the faster-growing breed compared to the slower-growing breed. DEGs including myosin heavy chain 15 (MYH15), myozenin 2 (MYOZ2), myosin-binding protein C (MYBPC3), insulin-like growth factor 2 (IGF2), apoptosis regulator (BCL-2), AP-1 transcription factor subunit (JUN), and AP-1 transcription factor subunit (FOS) directly regulated muscle growth or were in the center of the protein-protein interaction network. Pathways, including the extracellular matrix (ECM)-receptor interaction, mitogen-activated protein kinase (MAPK) signaling pathway, and focal adhesion, were the most enriched DEGs between lines or within lines under different developmental stages. Conclusions: Genes involved in muscle construction and cell differentiation were differentially expressed among the three breeds.


Asunto(s)
Pollos/genética , Transcriptoma , Animales , Cruzamiento , Pollos/crecimiento & desarrollo , Biología Computacional , Femenino , Perfilación de la Expresión Génica/veterinaria , Desarrollo de Músculos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/veterinaria , Músculos Pectorales/crecimiento & desarrollo
10.
J Hazard Mater ; 465: 133071, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38008051

RESUMEN

Thiram, an agricultural insecticide, has been demonstrated to induce tibial dyschondroplasia (TD) in avian species. Circular RNA (circRNAs), a novel class of functional biological macromolecules characterized by their distinct circular structure, play crucial roles in various biological processes and diseases. Nevertheless, the precise regulatory mechanism underlying non-coding RNA involvement in thiram-induced broiler tibial chondrodysplasia remains elusive. In this study, we established a broiler model of thiram exposure for 10 days to assess TD and obtain a ceRNA network by RNA sequencing. By analyzing the differentially expressed circRNAs network, we id entify that circ_003084 was significantly upregulated in TD cartilage. Elevated circ_003084 inhibited TD chondrocytes proliferation and differentiation in vitro but promote apoptosis. Mechanistically, circ_003084 competitively binds to miR-130c-5p and prevents miR-130c-5p to decrease the level of BMPR1A, which upregulates the expression of apoptosis genes Caspase 3, Caspase 9, Bax and Bcl2, and finally facilitates cell apoptosis. Taken together, these findings imply that circ_003084/miR-130c-5p/BMPR1A interaction regulated TD chicken chondrocyte proliferation, apoptosis, and differentiation. This is the first work to reveal the mechanism of regulation of circRNA-related ceRNA on thiram-induced TD, offering a key reference for environmental toxicology.


Asunto(s)
Fenómenos Biológicos , MicroARNs , Osteocondrodisplasias , Animales , Tiram , Osteocondrodisplasias/inducido químicamente , Osteocondrodisplasias/genética , Pollos , Condrocitos , ARN Circular/farmacología , MicroARNs/genética , Proliferación Celular
11.
Genes (Basel) ; 14(7)2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37510361

RESUMEN

Reducing abdominal fat (AF) accumulation and increasing the level of intramuscular fat (IMF) simultaneously is a major breeding goal in the poultry industry. To explore the different molecular mechanisms underlying AF and IMF, gene expression profiles in the breast muscle (BM) and AF from three chicken breeds were analyzed. A total of 4737 shared DEGs were identified between BM and AF, of which 2602 DEGs were upregulated and 2135 DEGs were downregulated in the BM groups compared with the AF groups. DEGs involved in glycerophospholipid metabolism and glycerolipid metabolism were potential regulators, resulting in the difference in lipid metabolite accumulation between IMF and AF. The PPAR signaling pathway was the most important pathway involved in tissue-specific lipid deposition. Correlation analysis showed that most representative DEGs enriched in the PPAR signaling pathway, such as FABP5, PPARG, ACOX1, and GK2, were negatively correlated with PUFA-enriched glycerophospholipid molecules. Most DEGs related to glycerophospholipid metabolism, such as GPD2, GPD1, PEMT, CRLS1, and GBGT1, were positively correlated with glycerophospholipid molecules, especially DHA- and arachidonic acid (ARA)-containing glycerophospholipid molecules. This study elucidated the molecular mechanism underlying tissue-specific lipid deposition and poultry meat quality.


Asunto(s)
Pollos , Perfilación de la Expresión Génica , Animales , Perfilación de la Expresión Génica/métodos , Pollos/genética , Pollos/metabolismo , PPAR gamma/genética , Grasa Abdominal/metabolismo , Lípidos
12.
Animals (Basel) ; 12(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36230321

RESUMEN

Indoor environmental control is usually applied in poultry farming to ensure optimum growth conditions for birds. However, these control methods represent a considerable share of total energy consumption, and the trend of applying new equipment in the future for precision livestock farming would further increase energy demand, resulting in an increase in greenhouse gas emissions and management costs. Therefore, to ensure optimum efficiency of both energy use and livestock productivity, a customized hourly model was developed in the present study to interpret and analyze the electronically collected data. The modules for estimating indoor gas concentrations were incorporated into the present model, as this has not been properly considered in previous studies. A validation test was performed in a manure-belt layer house using sensors and meters to measure the indoor environmental parameters and energy consumption. The predicted results, including indoor temperature, relative humidity, carbon dioxide and ammonia concentrations, showed good agreement with the measured data, indicating a similar overall trend with acceptable discrepancies. Moreover, the corresponding differences between the measured and simulated energy consumption for heating, tunnel ventilation and base ventilation were 13.7, 7.5, and 0.1%, respectively. The total energy demand estimated by the model showed a limited discrepancy of approximately 10.6% compared with that measured in reality. Although human factors, including inspection, cleaning, vaccination, etc., were not included in the model, the validation results still suggested that the customized model was able to accurately predict the indoor environment and overall energy consumption during poultry farming. The validated model provides a tool for poultry producers to optimize production planning and management strategies, increase the production rate of unit energy consumption and achieve precision livestock farming from an energy consumption standpoint.

13.
Poult Sci ; 101(7): 101922, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35588564

RESUMEN

It is generally accepted the gut microbiota have a profound effect on the nutrition, health, and production in poultry. To deeply understand the gut microbiota composition with the dietary fiber level in broilers, we evaluated the cecal microbiota profiles feeding on different dietary fiber level with alfalfa as additive in Dahen broilers based on 16S rRNA gene sequencing and gas chromatography. As a result, the gut microbiota diversity was greatly accelerated with the dietary fiber level. The dietary fiber stimulated the growth of many intestinal communities such as Rikenellaceae RC9 gut group, Faecalibacterium, Prevotellaceae UCG 001 and Ruminococcaceae UCG 014, and led to an altered microbial function such as Carbohydrate metabolism and Genetic information processing. Meanwhile, we found the genera Anaerofilum and Dielma were significantly correlated with the production of short chain fatty acids (SCFAs). All these results provide a reference for the broilers gut microbiota changes with different dietary fiber level. The key role of the altered microbiota with the dietary fiber may mediate beneficial effects in broiler production, which also reflect the substantial potential of dietary fiber level in poultry.


Asunto(s)
Microbioma Gastrointestinal , Animales , Pollos/genética , Fibras de la Dieta/metabolismo , Ácidos Grasos Volátiles/metabolismo , ARN Ribosómico 16S/genética
14.
Poult Sci ; 101(11): 102122, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36167016

RESUMEN

Studies have shown that prebiotics can affect meat quality; however, the underlying mechanisms remain poorly understood. This study aimed to investigate whether prebiotics affect the flavor of chicken meat via the gut microbiome and metabolome. The gut content was collected from chickens fed with or without prebiotics (galacto-oligosaccharides or xylo-oligosaccharides) and subjected to microbiome and metabolome analyses, whereas transcriptome sequencing was performed using chicken breast. Prebiotic supplementation yielded a slight improvement that was not statistically significant in the growth and production performance of chickens. Moreover, treatment with prebiotics promoted fat synthesis and starch hydrolysis, thus increasing meat flavor by enhancing lipase and α-amylase activity in the blood of broiler chickens. The prebiotics altered the proportions of microbiota in the gut at different levels, especially microbiota in the phyla Bacteroidetes and Firmicutes, such as members of the Alistipes, Bacteroides, and Faecalibacterium genera. Furthermore, the prebiotics altered the content of cecal metabolites related to flavor substances, including 8 types of lysophosphatidylcholine (lysoPC) and 4 types of amino acid. Differentially expressed genes (DEGs) induced by prebiotics were significantly involved in fatty acid accumulation processes, such as lipolysis in adipocytes and the adipocytokine signaling pathway. Changes in gut microbiota were correlated with metabolites, for example, Bacteroidetes and Firmicutes were positively and negatively correlated with lysoPC, respectively. Finally, DEGs interacted with cecal metabolites, especially meat-flavor-related amino acids and their derivatives. The findings of this study integrated and incorporated associations among the gut microbiota, metabolites, and transcriptome, which suggests that prebiotics affect the flavor of chicken meat.


Asunto(s)
Pollos , Microbiota , Animales , Pollos/metabolismo , Transcriptoma , Oligosacáridos/metabolismo , Metaboloma , Carne/análisis , Prebióticos/análisis
15.
Genes Genomics ; 44(11): 1323-1331, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36087248

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) play an essential role in biological processes. However, the expression patterns of lncRNAs that regulate the non-Mendelian inheritance feather phenotypes remain unknown. OBJECTIVE: This study aimed to compare the expression profiles of lncRNAs in the follicles of the late-feathering cocks (LC) and late-feathering hens (LH) that followed genetic rules and the early-feathering hen (EH) and early-feathering cock (EC) that did not conform to the genetic laws. METHODS: We performed RNA sequencing and investigated the differentially expressed lncRNAs (DElncRNAs) between the early- and late-feathering chickens, which function by cis-acting or participate in the competing endogenous RNA (ceRNA) network. RESULTS: A total of 53 upregulated and 43 downregulated lncRNAs were identified in EC vs. LC, and 58 upregulated and 109 downregulated lncRNAs were identified in EH vs. LH. The target mRNAs regulated by lncRNAs in cis were enriched in the pentose phosphate pathway, TGF-ß signaling pathway and Jak-STAT signaling pathway in EC vs. LC and were associated with the TGF-ß signaling pathway, Wnt signaling pathway, p53 signaling pathway and Jak-STAT signaling pathway in EH vs. LH. In addition, the lncRNA-mediated ceRNA regulatory pathways of hair follicle formation were mainly enriched in the TGF-ß signaling pathway, Wnt signaling pathway, melanogenesis, and calcium signaling pathways. The levels of ENSGALG00000047626 were significantly higher in the late-feathering chickens than in the early-feathering chickens, which regulated the expression of SSTR2 by gga-miR-1649-5p. CONCLUSION: This study provides a novel molecular mechanism of lncRNA's response to the feather rate that does not conform to the genetic laws in chickens.


Asunto(s)
Fenómenos Biológicos , MicroARNs , ARN Largo no Codificante , Animales , Pollos/genética , Plumas/metabolismo , Femenino , Redes Reguladoras de Genes , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Análisis de Secuencia de ARN , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteína p53 Supresora de Tumor/genética , Vía de Señalización Wnt
16.
Animals (Basel) ; 11(8)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34438889

RESUMEN

The main advantage of having livestock, for example, the laying hens, in a controlled environment is that the optimum growth conditions can be achieved with accuracy. The indoor air temperature, humidity, gases concentration, etc., would significantly affect the animal performance, thus should be maintained within an acceptable range. In order to achieve the goals of precision poultry farming, various models have been developed by researchers all over the world to estimate the hourly indoor environmental parameters so as to provide decision suggestions. However, a key parameter of hourly manure area in the poultry house was missing in the literature to predict the ammonia emission using the recently developed mechanistic model. Therefore, in order to fill the gap of the understanding of hourly manure coverage proportion and area on the manure belt, experimental measurements were performed in the present study using laying hens from 10 weeks age to 30 weeks age. For each test, six polypropylene (pp) plates were applied to collect the manure dropped by the birds every hour, and photographs of the plates were taken at the same time using a pre-fixed camera. Binary images were then produced based on the color pictures to determine the object coverage proportion. It was demonstrated that for laying hens of stocking density around 14 birds/m2, the manure coverage proportion at the 24th hour after the most recent manure removal was about 60%, while the value was approximately 82% at the 48th hour. Meanwhile, for laying hens at different ages, the hourly increment of manure coverage proportion showed a similar pattern with four distinct stages within 48 h. The statistical analyses demonstrated no significant correlation between the hourly increment of manure weight and the hourly increment of manure coverage proportion. Finally, prediction models for estimating the hourly manure coverage proportion on the manure belt in typical laying hen houses were provided.

17.
Biol Trace Elem Res ; 199(8): 3053-3061, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33078306

RESUMEN

Cadmium pollution is serious heavy metal pollution in environmental pollution and impacts on livestock productivity. However, the effect and mechanisms of cadmium toxicity on the broiler remain unclear. This study aimed to explore the liver oxidative damage and reveal the related long non-coding RNA (lncRNA) expression patterns in the broiler liver with cadmium exposure. The broilers were fed with diets containing CdCl2 and detected the oxidative stress indexes in the liver tissues. Transcriptome sequencing of broiler liver was performed to identify cadmium exposure-related differentially expressed lncRNAs (DElncRNAs). The functions and pathways of DElncRNAs were analyzed by GO and KEGG. The sequencing results were verified by the quantitative real-time polymerase chain reaction. Cadmium exposure induced tissue structure disorder, focal hemorrhage, and irregular hepatocytes in the broiler liver, and significantly decreased GSH level and enzyme activities, and increased MDA expression in the liver. A total of 74 DElncRNAs were obtained in cadmium group compared with the control group, which were enriched in the GO terms, including intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator, branched-chain amino acid biosynthetic process. The enriched KEGG pathways, including lysine biosynthesis, valine, leucine and isoleucine biosynthesis, and pantothenate and CoA biosynthesis, were related to oxidative stress. PCR analysis indicated that the changes in ENSGALG00000053559, ENSGALG00000053926, and ENSGALG00000054404 expression were consistent with sequencing. Our results provide novel lncRNAs involved in oxidative stress in the broiler liver with cadmium exposure.


Asunto(s)
ARN Largo no Codificante , Animales , Cadmio/metabolismo , Cadmio/toxicidad , Pollos , Hígado/metabolismo , Estrés Oxidativo/genética , ARN Largo no Codificante/metabolismo
18.
Genes (Basel) ; 12(6)2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073601

RESUMEN

The proliferation and differentiation of skeletal muscle satellite cells (SMSCs) play an important role in the development of skeletal muscle. Our previous sequencing data showed that miR-21-5p is one of the most abundant miRNAs in chicken skeletal muscle. Therefore, in this study, the spatiotemporal expression of miR-21-5p and its effects on skeletal muscle development of chickens were explored using in vitro cultured SMSCs as a model. The results in this study showed that miR-21-5p was highly expressed in the skeletal muscle of chickens. The overexpression of miR-21-5p promoted the proliferation of SMSCs as evidenced by increased cell viability, increased cell number in the proliferative phase, and increased mRNA and protein expression of proliferation markers including PCNA, CDK2, and CCND1. Moreover, it was revealed that miR-21-5p promotes the formation of myotubes by modulating the expression of myogenic markers including MyoG, MyoD, and MyHC, whereas knockdown of miR-21-5p showed the opposite result. Gene prediction and dual fluorescence analysis confirmed that KLF3 was one of the direct target genes of miR-21-5p. We confirmed that, contrary to the function of miR-21-5p, KLF3 plays a negative role in the proliferation and differentiation of SMSCs. Si-KLF3 promotes cell number and proliferation activity, as well as the cell differentiation processes. Our results demonstrated that miR-21-5p promotes the proliferation and differentiation of SMSCs by targeting KLF3. Collectively, the results obtained in this study laid a foundation for exploring the mechanism through which miR-21-5p regulates SMSCs.


Asunto(s)
Proteínas Aviares/genética , Diferenciación Celular , Proliferación Celular , Factores de Transcripción de Tipo Kruppel/genética , MicroARNs/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Animales , Proteínas Aviares/metabolismo , Línea Celular , Células Cultivadas , Pollos , Factores de Transcripción de Tipo Kruppel/metabolismo , MicroARNs/genética , Desarrollo de Músculos , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/fisiología
19.
Gene Expr Patterns ; 40: 119181, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34004346

RESUMEN

BACKGROUND: The adaptation to hypoxia in high altitude areas has great research value in the field of biological sciences. Tibetan chicken has unique adaptability to high-altitude, low pressure and anoxic conditions, and served as a biological model to search for genetic diversity of hypoxia adaption. METHODS: The whole genome re-sequencing technology was conducted to investigate the genetic diversity. RESULTS: In this study, we obtained quantity genetic resource, contained 5164926 single nucleotide polymorphisms (SNPs), 237504 Insertion/Deletion (InDel), 55606 structural variation types in all chromosomes of Tibetan chicken. Moreover, 17154 non-synonymous mutations, 45763 synonymous mutations, 258 InDel mutations and 9468 structural mutations were detected in coding sequencing (CDS) region. Furthermore, SNPs occur in 591 genes, including HIF1A, VEGF, MAPK 8/9/10/11, PPARA/D/G, NOTCH2, and ABCs, which were involved in 14 hypoxia-related pathways, such as VEGF signaling pathway, MAPK signaling pathway, PPAR signaling pathway and Notch signaling pathway. Among them, 19 genes with non-synonymous SNP variation in CDS were identified. Moreover, structure variation in CDS also occurred in the mentioned above genes with SNPs. CONCLUSIONS: This study provides useful targets for clarifying the hypoxia adaptability of the domestication of chickens in Tibetan and may help breeding efforts to develop improved breeds for the highlands.


Asunto(s)
Adaptación Fisiológica , Altitud , Pollos/genética , Polimorfismo de Nucleótido Simple , Animales , Proteínas Aviares/genética , Pollos/fisiología , Mutación INDEL , Redes y Vías Metabólicas
20.
Poult Sci ; 100(3): 100932, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33652545

RESUMEN

As a ubiquitous heavy metal, cadmium (Cd) is highly toxic to various organs. However, the effects and molecular mechanism of Cd toxicity in the chicken heart remain largely unknown. The goal of our study was to investigate the cardiac injury in chickens' exposure to Cd. We detected the levels of oxidative stress-related molecules in the Cd-induced chicken heart, and assessed the histopathological changes by hematoxylin and eosin staining. RNA sequencing was performed to identify differentially expressed mRNAs between the Cd-induced group and control group. The expression of candidate genes involved in oxidative stress was certified by quantitative reverse transcription PCR. Our results showed that the expression of glutathione, peroxidase, and superoxide dismutase was significantly decreased and malondialdehyde was increased in the heart of chickens by Cd induction. The disorderly arranged cardiomyocytes, swelled and enlarged cells, partial cardiomyocyte necrosis, blurred morphological structure, and notable inflammatory cell infiltration were observed in the Cd-induced chicken heart. RNA sequencing identified 23 upregulated and 11 downregulated mRNAs in the heart tissues of the chicken in the Cd-induced group, and functional pathways indicated that they were associated with oxidative stress. Moreover, CREM, DUSP8, and ITGA11 expressions were significantly reduced, whereas LAMA1 expression was induced in heart tissue of chickens by Cd treatment. Overall, our findings revealed that oxidative stress and pathological changes in the chicken heart could be triggered by Cd. The mRNA transcriptional profiles identified differentially expressed genes in the chicken heart by Cd induction, revealing oxidative stress-related key genes and enhancing our understanding of Cd toxicity in the chicken heart.


Asunto(s)
Cadmio , Pollos , Animales , Antioxidantes , Cadmio/toxicidad , Pollos/genética , Estrés Oxidativo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA