Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Ecotoxicol Environ Saf ; 268: 115732, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38000301

RESUMEN

Glutathione plays a critical role in plant growth, development and response to stress. It is a major cellular antioxidant and is involved in the detoxification of xenobiotics in many organisms, including plants. However, the role of glutathione-dependent redox homeostasis and associated molecular mechanisms regulating the antioxidant system and pesticide metabolism remains unclear. In this study, endogenous glutathione levels were manipulated by pharmacological treatments with glutathione synthesis inhibitors and oxidized glutathione. The application of oxidized glutathione enriched the cellular oxidation state, reduced the activity and transcript levels of antioxidant enzymes, upregulated the expression level of nitric oxide and Ca2+ related genes and the content, and increased the residue of chlorothalonil in tomato leaves. Further experiments confirmed that glutathione-induced redox homeostasis is critical for the reduction of pesticide residues. RNA sequencing analysis revealed that miRNA156 and miRNA169 that target transcription factor SQUAMOSA-Promoter Binding Proteins (SBP) and NUCLEAR FACTOR Y (NFY) potentially participate in glutathione-mediated pesticide degradation in tomato plants. Our study provides important clues for further dissection of pesticide degradation mechanisms via miRNAs in plants.


Asunto(s)
Plaguicidas , Solanum lycopersicum , Antioxidantes/metabolismo , Solanum lycopersicum/genética , Disulfuro de Glutatión/metabolismo , Glutatión/metabolismo , Oxidación-Reducción , Plaguicidas/metabolismo , Plantas/metabolismo , Homeostasis , Estrés Oxidativo
2.
Sensors (Basel) ; 23(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420573

RESUMEN

Wearable exoskeletons can help people with mobility impairments by improving their rehabilitation. As electromyography (EMG) signals occur before movement, they can be used as input signals for the exoskeletons to predict the body's movement intention. In this paper, the OpenSim software is used to determine the muscle sites to be measured, i.e., rectus femoris, vastus lateralis, semitendinosus, biceps femoris, lateral gastrocnemius, and tibial anterior. The surface electromyography (sEMG) signals and inertial data are collected from the lower limbs while the human body is walking, going upstairs, and going uphill. The sEMG noise is reduced by a wavelet-threshold-based complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) reduction algorithm, and the time-domain features are extracted from the noise-reduced sEMG signals. Knee and hip angles during motion are calculated using quaternions through coordinate transformations. The random forest (RF) regression algorithm optimized by cuckoo search (CS), shortened as CS-RF, is used to establish the prediction model of lower limb joint angles by sEMG signals. Finally, root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) are used as evaluation metrics to compare the prediction performance of the RF, support vector machine (SVM), back propagation (BP) neural network, and CS-RF. The evaluation results of CS-RF are superior to other algorithms under the three motion scenarios, with optimal metric values of 1.9167, 1.3893, and 0.9815, respectively.


Asunto(s)
Rodilla , Músculo Esquelético , Humanos , Electromiografía/métodos , Músculo Esquelético/fisiología , Extremidad Inferior , Articulación de la Rodilla/fisiología , Algoritmos
3.
Sensors (Basel) ; 23(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37571476

RESUMEN

Finding ways to enable seamless communication between deaf and able-bodied individuals has been a challenging and pressing issue. This paper proposes a solution to this problem by designing a low-cost data glove that utilizes multiple inertial sensors with the purpose of achieving efficient and accurate sign language recognition. In this study, four machine learning models-decision tree (DT), support vector machine (SVM), K-nearest neighbor method (KNN), and random forest (RF)-were employed to recognize 20 different types of dynamic sign language data used by deaf individuals. Additionally, a proposed attention-based mechanism of long and short-term memory neural networks (Attention-BiLSTM) was utilized in the process. Furthermore, this study verifies the impact of the number and position of data glove nodes on the accuracy of recognizing complex dynamic sign language. Finally, the proposed method is compared with existing state-of-the-art algorithms using nine public datasets. The results indicate that both the Attention-BiLSTM and RF algorithms have the highest performance in recognizing the twenty dynamic sign language gestures, with an accuracy of 98.85% and 97.58%, respectively. This provides evidence for the feasibility of our proposed data glove and recognition methods. This study may serve as a valuable reference for the development of wearable sign language recognition devices and promote easier communication between deaf and able-bodied individuals.


Asunto(s)
Lengua de Signos , Dispositivos Electrónicos Vestibles , Humanos , Habla , Algoritmos , Audición
4.
Ecotoxicol Environ Saf ; 233: 113296, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35158253

RESUMEN

Glutathione (GSH) biosynthesis and regeneration play a significant role in the metabolism of chlorothalonil (CHT) in tomatoes. However, the specific regulatory mechanism of GSH in the degradation of CHT remains uncertain. To address this, we investigate the critical regulatory pathways in the degradation of residual CHT in tomatoes. The results revealed that the detoxification of CHT residue in tomatoes was inhibited by buthionine sulfoximine and oxidized glutathione pretreatment, which increased by 26% and 46.12% compared with control, respectively. Gene silencing of γECS, GS, and GR also compromised the CHT detoxification potential of plants, which could be alleviated by GSH application and decreased the CHT accumulation by 33%, 25%, and 21%, respectively. Notably, it was found that the jasmonic acid (JA) pathway participated in the degradation of CHT regulated by GSH. CHT residues reduced by 28% after application of JA. JA played a role downstream of the glutathione pathway by promoting the degradation of CHT residue in tomatoes via nitric oxide signaling and improving the gene expression of antioxidant and detoxification-related enzymes. This study unveiled a crucial regulatory mechanism of GSH via the JA pathway in CHT degradation in tomatoes and offered new insights for understanding residual pesticide degradation.


Asunto(s)
Solanum lycopersicum , Ciclopentanos , Glutatión/metabolismo , Solanum lycopersicum/genética , Nitrilos , Oxilipinas/metabolismo
5.
Sensors (Basel) ; 21(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672828

RESUMEN

Gait analysis, as a common inspection method for human gait, can provide a series of kinematics, dynamics and other parameters through instrumental measurement. In recent years, gait analysis has been gradually applied to the diagnosis of diseases, the evaluation of orthopedic surgery and rehabilitation progress, especially, gait phase abnormality can be used as a clinical diagnostic indicator of Alzheimer Disease and Parkinson Disease, which usually show varying degrees of gait phase abnormality. This research proposed an inertial sensor based gait analysis method. Smoothed and filtered angular velocity signal was chosen as the input data of the 15-dimensional temporal characteristic feature. Hidden Markov Model and parameter adaptive model are used to segment gait phases. Experimental results show that the proposed model based on HMM and parameter adaptation achieves good recognition rate in gait phases segmentation compared to other classification models, and the recognition results of gait phase are consistent with ground truth. The proposed wearable device used for data collection can be embedded on the shoe, which can not only collect patients' gait data stably and reliably, ensuring the integrity and objectivity of gait data, but also collect data in daily scene and ambulatory outdoor environment.


Asunto(s)
Marcha , Dispositivos Electrónicos Vestibles , Fenómenos Biomecánicos , Humanos
6.
Sensors (Basel) ; 21(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33573000

RESUMEN

Proper stroke posture and rhythm are crucial for kayakers to achieve perfect performance and avoid the occurrence of sport injuries. The traditional video-based analysis method has numerous limitations (e.g., site and occlusion). In this study, we propose a systematic approach for evaluating the training performance of kayakers based on the multiple sensors fusion technology. Kayakers' motion information is collected by miniature inertial sensor nodes attached on the body. The extend Kalman filter (EKF) method is used for data fusion and updating human posture. After sensor calibration, the kayakers' actions are reconstructed by rigid-body model. The quantitative kinematic analysis is carried out based on joint angles. Machine learning algorithms are used for differentiating the stroke cycle into different phases, including entry, pull, exit and recovery. The experiment shows that our method can provide comprehensive motion evaluation information under real on-water scenario, and the phase identification of kayaker's motions is up to 98% validated by videography method. The proposed approach can provide quantitative information for coaches and athletes, which can be used to improve the training effects.


Asunto(s)
Postura , Dispositivos Electrónicos Vestibles , Algoritmos , Fenómenos Biomecánicos , Humanos , Movimiento (Física) , Deportes
7.
Sensors (Basel) ; 20(7)2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32276521

RESUMEN

Coaches and athletes are constantly seeking novel training methodologies in an attempt to improve athletic performance. This paper proposes a method of rowing sport capture and analysis based on Inertial Measurement Units (IMUs). A canoeist's motion was collected by multiple miniature inertial sensor nodes. The gradient descent method was used to fuse data and obtain the canoeist's attitude information after sensor calibration, and then the motions of canoeist's actions were reconstructed. Stroke quality was performed based on the estimated joint angles. Machine learning algorithm was used as the classification method to divide the stroke cycle into different phases, including propulsion-phase and recovery-phase, a quantitative kinematic analysis was carried out. Experiments conducted in this paper demonstrated that our method possesses the capacity to reveal the similarities and differences between novice and coach, the whole process of canoeist's motions can be analyzed with satisfactory accuracy validated by videography method. It can provide quantitative data for coaches or athletes, which can be used to improve the skills of rowers.


Asunto(s)
Algoritmos , Movimiento (Física) , Deportes Acuáticos , Acelerometría , Fenómenos Biomecánicos , Humanos , Articulaciones/fisiología , Análisis de Componente Principal , Extremidad Superior/fisiología , Grabación en Video , Dispositivos Electrónicos Vestibles
8.
Sensors (Basel) ; 20(4)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098239

RESUMEN

Human gait reflects health condition and is widely adopted as a diagnostic basisin clinical practice. This research adopts compact inertial sensor nodes to monitor the functionof human lower limbs, which implies the most fundamental locomotion ability. The proposedwearable gait analysis system captures limb motion and reconstructs 3D models with high accuracy.It can output the kinematic parameters of joint flexion and extension, as well as the displacementdata of human limbs. The experimental results provide strong support for quick access to accuratehuman gait data. This paper aims to provide a clue for how to learn more about gait postureand how wearable gait analysis can enhance clinical outcomes. With an ever-expanding gait database,it is possible to help physiotherapists to quickly discover the causes of abnormal gaits, sports injuryrisks, and chronic pain, and provides guidance for arranging personalized rehabilitation programsfor patients. The proposed framework may eventually become a useful tool for continually monitoringspatio-temporal gait parameters and decision-making in an ambulatory environment.


Asunto(s)
Marcha/fisiología , Dispositivos Electrónicos Vestibles , Adulto , Algoritmos , Humanos , Masculino , Monitoreo Fisiológico/métodos , Rango del Movimiento Articular/fisiología , Adulto Joven
9.
Sensors (Basel) ; 19(20)2019 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-31635127

RESUMEN

Combining research areas of biomechanics and pedestrian dead reckoning (PDR) provides a very promising way for pedestrian positioning in environments where Global Positioning System (GPS) signals are degraded or unavailable. In recent years, the PDR systems based on a smartphone's built-in inertial sensors have attracted much attention in such environments. However, smartphone-based PDR systems are facing various challenges, especially the heading drift, which leads to the phenomenon of estimated walking path passing through walls. In this paper, the 2D PDR system is implemented by using a pocket-worn smartphone, and then enhanced by introducing a map-matching algorithm that employs a particle filter to prevent the wall-crossing problem. In addition, to extend the PDR system for 3D applications, the smartphone's built-in barometer is used to measure the pressure variation associated to the pedestrian's vertical displacement. Experimental results show that the map-matching algorithm based on a particle filter can effectively solve the wall-crossing problem and improve the accuracy of indoor PDR. By fusing the barometer readings, the vertical displacement can be calculated to derive the floor transition information. Despite the inherent sensor noises and complex pedestrian movements, smartphone-based 3D pedestrian positioning systems have considerable potential for indoor location-based services (LBS).

10.
Chemistry ; 23(70): 17727-17733, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29027280

RESUMEN

An amine-containing non-interpenetrating pillar-layer framework, [Zn2 (dbtcb)(L1)]⋅x solvent (1), has been synthesized from Zn(NO3 )2 and the ligands 1,4-dibromo-2,3,5,6-tetrakis(4-carboxyphenyl)benzene (H4 DBTCB) and 2,5-bis(4-pyridyl)aniline (L1). The [Zn2 (COO)4 ] secondary building units (SBUs) are bridged by DBTCB to form two-dimensional layers that are linked by L1 ligands acting as pillars to form a three-dimensional network. This NH2 -containing framework can undergo versatile tailoring through post-synthetic covalent modification, solvent-assisted linker exchange (SALE), and single-crystal-to-single-crystal (SC-SC) transmetalation reactions. Acetamide-functionalized [Zn2 (L2)(dbtcb)]⋅xsolvent (2) could be obtained by direct synthesis from Zn(NO3 )2 , N-acetyl-2,5-bis(4-pyridyl)aniline (L2) and H4 DBTCB. Importantly, compound 1 with pure NH2 ligands as pillars could be obtained by SALE of 2 with L1 in DMSO solution. The transmetalation reactions of 1 with CuII , NiII , and CoII were studied; inductively coupled plasma-atomic emission (ICP) analysis revealed that 1 underwent almost complete SC-SC transmetalation with CuII within 30 h, whereas with NiII and CoII only 70 and 80 % substitutions were achieved. Photoluminescence studies revealed that 1 and 2 display yellow-green and UV emission, respectively, under a UV lamp. Furthermore, the photoluminescent properties could be tuned by introducing mixed pillar amino ligands L1 and L2 into the MOF to produce multivariate (MTV) MOF 3 displaying overall orange emission.

11.
Inorg Chem ; 56(20): 12357-12361, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-28960994

RESUMEN

An uncoordinated salen-containing metal-organic framework (MOF) obtained through postsynthesis removal of Mn(III) ions from a metallosalen-containing MOF material has been used for selective separation of Th(IV) ion from Ln(III) ions in methanol solutions for the first time. This material exhibited an adsorption capacity of 46.345 mg of Th/g. The separation factors (ß) of Th(IV)/La(III), Th(IV)/Eu(III), and Th(IV)/Lu(III) were 10.7, 16.4, and 10.3, respectively.

12.
BMC Musculoskelet Disord ; 16: 221, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26300114

RESUMEN

BACKGROUND: The negative effect of long-term working load on lumbar is widely known. However, insertion of different resting modes on long-term working load, and its effects on the lumbar spine is rarely studied. The purpose of this study was to investigate the biomechanical responses of lumbar spine with different levels of degenerated intervertebral discs under different working-resting modes. METHODS: Four poroelastic finite element models of lumbar spinal segments L2-L3 with different grades of disc degeneration were developed. Four different loading conditions represented four different resting frequencies, namely, no rest, one-time long rest, three-time moderate rests, and five-time short rests, on the condition that the total resting time was the same except in the no rest mode. Loading amplitudes of diurnal activities included 100 N, 300 N, and 500 N. RESULTS: With increasing resting frequency, the axial effective stress and fluid loss decreased, whereas the pore pressure and radial displacement increased. Under different resting frequencies, the changing rate of each biomechanical parameter was different. CONCLUSIONS: Under a situation of fixed total resting time, high resting frequency was advisable. If sufficient resting frequency was unavailable for healthy people as well as patients with mildly and moderately degenerated intervertebral discs, they could similarly benefit from relatively less resting frequencies. However, one-time rest will not be useful in cases where intervertebral discs were seriously degenerated. Reasonable working-resting modes for different degrees of disc degeneration, which could assist patients achieve a better restoration, were provided in this study.


Asunto(s)
Degeneración del Disco Intervertebral/fisiopatología , Vértebras Lumbares/fisiopatología , Descanso/fisiología , Soporte de Peso , Anciano , Simulación por Computador , Elasticidad , Análisis de Elementos Finitos , Humanos , Degeneración del Disco Intervertebral/diagnóstico por imagen , Vértebras Lumbares/diagnóstico por imagen , Persona de Mediana Edad , Ocupaciones , Osteofito/diagnóstico por imagen , Porosidad , Factores de Tiempo , Tomografía Computarizada por Rayos X , Viscosidad , Adulto Joven
13.
Comput Biol Med ; 173: 108348, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531249

RESUMEN

Drug-induced diseases are the most important component of iatrogenic disease. It is the duty of doctors to provide a reasonable and safe dose of medication. Gunqile-7 is a Mongolian medicine with analgesic and anti-inflammatory effects. As a foreign substance in the body, even with reasonable medication, it may produce varying degrees of adverse reactions or toxic side effects. Since the cost of collecting Gunqile-7 for pharmacological animal trials is high and the data sample is small, this paper employs transfer learning and data augmentation methods to study the toxicity of Gunqile-7. More specifically, to reduce the necessary number of training samples, the data augmentation approach is employed to extend the data set. Then, the transfer learning method and one-dimensional convolutional neural network are utilized to train the network. In addition, we use the support vector machine-recursive feature elimination method for feature selection to reduce features that have adverse effects on model predictions. Furthermore, due to the important role of the pre-trained model of transfer learning, we select a quantitative toxicity prediction model as the pre-trained model, which is consistent with the purpose of this paper. Lastly, the experimental results demonstrate the efficiency of the proposed method. Our method can improve accuracy by up to 9 percentage points compared to the method without transfer learning on a small sample set.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Máquina de Vectores de Soporte
14.
IEEE J Biomed Health Inform ; 28(5): 3102-3113, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38483807

RESUMEN

The classification analysis of incomplete and imbalanced data is still a challenging task since these issues could negatively impact the training of classifiers, which were also found in our study on the physical fitness assessments of patients. And in fields such as healthcare, there are higher requirements for the accuracy of the generated imputation values. To train a high-performance classifier and pursue high accuracy, we attempted to resolve any potential negative impact by using a novel algorithmic approach based on the combination of multivariate imputation by chained equations and the ensemble learning method (MICEEN), which can solve the two problems simultaneously. We used multivariate imputation by chained equations to generate more accurate imputation values for the training set passed to ensemble learning to build a predictor. On the other hand, missing values were introduced into minority classes and used them to generate new samples belonging to the minority classes in order to balance the distribution of classes. On real-world datasets, we perform extensive experiments to assess our method and compare it to other state-of-the-art approaches. The advantages of the proposed method are demonstrated by experimental results for the benchmark datasets and self-collected datasets of physical fitness assessment of tumor patients with varying missing rates.


Asunto(s)
Algoritmos , Aprendizaje Automático , Humanos , Bases de Datos Factuales , Aptitud Física/fisiología , Análisis Multivariante
15.
Micromachines (Basel) ; 14(5)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37241571

RESUMEN

Gesture recognition has found widespread applications in various fields, such as virtual reality, medical diagnosis, and robot interaction. The existing mainstream gesture-recognition methods are primarily divided into two categories: inertial-sensor-based and camera-vision-based methods. However, optical detection still has limitations such as reflection and occlusion. In this paper, we investigate static and dynamic gesture-recognition methods based on miniature inertial sensors. Hand-gesture data are obtained through a data glove and preprocessed using Butterworth low-pass filtering and normalization algorithms. Magnetometer correction is performed using ellipsoidal fitting methods. An auxiliary segmentation algorithm is employed to segment the gesture data, and a gesture dataset is constructed. For static gesture recognition, we focus on four machine learning algorithms, namely support vector machine (SVM), backpropagation neural network (BP), decision tree (DT), and random forest (RF). We evaluate the model prediction performance through cross-validation comparison. For dynamic gesture recognition, we investigate the recognition of 10 dynamic gestures using Hidden Markov Models (HMM) and Attention-Biased Mechanisms for Bidirectional Long- and Short-Term Memory Neural Network Models (Attention-BiLSTM). We analyze the differences in accuracy for complex dynamic gesture recognition with different feature datasets and compare them with the prediction results of the traditional long- and short-term memory neural network model (LSTM). Experimental results demonstrate that the random forest algorithm achieves the highest recognition accuracy and shortest recognition time for static gestures. Moreover, the addition of the attention mechanism significantly improves the recognition accuracy of the LSTM model for dynamic gestures, with a prediction accuracy of 98.3%, based on the original six-axis dataset.

16.
Comput Biol Med ; 159: 106938, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37119553

RESUMEN

Using ECG signals captured by wearable devices for emotion recognition is a feasible solution. We propose a deep convolutional neural network incorporating attentional mechanisms for ECG emotion recognition. In order to address the problem of individuality differences in emotion recognition tasks, we incorporate an improved Convolutional Block Attention Module (CBAM) into the proposed deep convolutional neural network. The deep convolutional neural network is responsible for capturing ECG features. Channel attention in CBAM is responsible for adding weight information to ECG features of different channels and spatial attention is responsible for the weighted representation of ECG features of different regions inside the channel. We used three publicly available datasets, WESAD, DREAMER, and ASCERTAIN, for the ECG emotion recognition task. The new state-of-the-art results are set in three datasets for multi-class classification results, WESAD for tri-class results, and ASCERTAIN for two-category results, respectively. A large number of experiments are performed, providing an interesting analysis of the design of the convolutional structure parameters and the role of the attention mechanism used. We propose to use large convolutional kernels to improve the effective perceptual field of the model and thus fully capture the ECG signal features, which achieves better performance compared to the commonly used small kernels. In addition, channel attention and spatial attention were added to the deep convolutional model separately to explore their contribution levels. We found that in most cases, channel attention contributed to the model at a higher level than spatial attention.


Asunto(s)
Redes Neurales de la Computación , Dispositivos Electrónicos Vestibles , Algoritmos , Emociones , Electrocardiografía
17.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 7): m902, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22807742

RESUMEN

The asymmetric unit of the title compound, {[MgNa2(C10H4O8)2(H2O)8]·2H2O}(n), contains one octa-hedrally coordin-ated Mg(II) atom (site symmetry 2/m), one octahedrally coordinated Na(I) atom (site symmetry 2) and one half of the dihydrogen benzene-1,2,4,5-tetra-carboxyl-ate (btec) ligand, the second half of the ligand being generated by a twofold rotation axis. The basic framework of the title compound features infinite (-Na-Na-Mg-)(n) chains along [10-1] with the metal cations bridged by the coordinating water molecules. The chains are isolated from each other by µ4-bridging btec ligands, which form inter-molecular O-H⋯O hydrogen bonds to uncoordinated water mol-ecules and the coordinated water mol-ecules of a neighbouring chain. In each btec ligand, there are also intramolecular O-H⋯O hydrogen bonds.

18.
Micromachines (Basel) ; 13(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36144032

RESUMEN

According to the working scenes, a proper light environment can enable people to maintain greater attention and meditation. A posture detection system in different working scenes is proposed in this paper, and different lighting conditions are provided for changes in body posture. This aims to stimulate the nervous system and improve work efficiency. A brainwave acquisition system was used to capture the participants' optimal attention and meditation. The posture data are collected by ten miniature inertial measurement units (IMUs). The gradient descent method is used for information fusion and updating the participant's attitude after sensor calibration. Compared with the optical capture system, the reliability of the system is verified, and the correlation coefficient of both joint angles is as high as 0.9983. A human rigid body model is designed for reconstructing the human posture. Five classical machine learning algorithms, including logistic regression, support vector machine (SVM), decision tree, random forest, and k-nearest neighbor (KNN), are used as classification algorithms to recognize different postures based on joint angles series. The results show that SVM and random forest achieve satisfactory classification effects. The effectiveness of the proposed method is demonstrated in the designed systematic experiment.

19.
IEEE J Biomed Health Inform ; 26(5): 2008-2019, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34986108

RESUMEN

New technological innovations are changing the future of healthcare system. Identification of factors that are responsible for causing depression may lead to new experiments and treatments. Because depression as a disease is becoming a leading community health concern worldwide. Using machine learning techniques this article presents a complete methodological framework to process and explore the heterogenous data and to better understand the association between factors related to quality of life and depression. Subsequently, the experimental study is mainly divided into two parts. In the first part, a data consolidation process is presented. The relationship of data is formed and to uniquely identify each relation in data the concept of the Secure Hash Algorithm is adopted. Hashing is used to locate and index the actual items in the data. The second part proposed a model using both unsupervised and supervised machine learning techniques. The consolidation approach helped in providing a base for formulation and validation of the research hypothesis. The Self organizing map provided 08 cluster solution and the classification problems were taken from the clustered data to further validate the performance of the posterior probability multi-class Support Vector Machine. The expectations of the importance sampling resulted in factors responsible for causing depression. The proposed model was adopted to improve the classification performance, and the result showed classification accuracy of 91.16%.


Asunto(s)
Depresión , Calidad de Vida , Atención a la Salud , Depresión/diagnóstico , Humanos , Aprendizaje Automático , Máquina de Vectores de Soporte
20.
IEEE J Biomed Health Inform ; 26(8): 4165-4175, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35544509

RESUMEN

For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The error state Kalman filter (ESKF) is used for attitude estimation, and the gait parameters are modified by phase segmentation and zero velocity update (ZUPT) algorithm. In addition, this study uses gait parameters as classifier features to recognize abnormal gait, and compares the recognition effect with statistical features. The effect of our gait system is verified by comparison with the OptiTrack system, and the mean absolute error (MAE) of step length and foot clearance are 2.52 ±3.61 cm and 0.96 ±1.24 cm respectively. Forty Parkinson's patients and forty age-matched healthy people are recruited for gait comparison, the analysis results showed significant differences between the two groups. The abnormal gait recognition results show that gait features have stronger generalization ability than statistical features in leave-one-subject-out (LOSO) validation. The method proposed in this study can be applied to the gait analysis and objective evaluation of PD.


Asunto(s)
Enfermedad de Parkinson , Dispositivos Electrónicos Vestibles , Pie , Marcha , Análisis de la Marcha , Humanos , Enfermedad de Parkinson/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA