Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(18): e2300291120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37098060

RESUMEN

Transcranial low-intensity ultrasound is a promising neuromodulation modality, with the advantages of noninvasiveness, deep penetration, and high spatiotemporal accuracy. However, the underlying biological mechanism of ultrasonic neuromodulation remains unclear, hindering the development of efficacious treatments. Here, the well-known Piezo1 was studied through a conditional knockout mouse model as a major mediator for ultrasound neuromodulation ex vivo and in vivo. We showed that Piezo1 knockout (P1KO) in the right motor cortex of mice significantly reduced ultrasound-induced neuronal calcium responses, limb movement, and muscle electromyogram (EMG) responses. We also detected higher Piezo1 expression in the central amygdala (CEA), which was found to be more sensitive to ultrasound stimulation than the cortex was. Knocking out the Piezo1 in CEA neurons showed a significant reduction of response under ultrasound stimulation, while knocking out astrocytic Piezo1 showed no-obvious changes in neuronal responses. Additionally, we excluded an auditory confound by monitoring auditory cortical activation and using smooth waveform ultrasound with randomized parameters to stimulate P1KO ipsilateral and contralateral regions of the same brain and recording evoked movement in the corresponding limb. Thus, we demonstrate that Piezo1 is functionally expressed in different brain regions and that it is an important mediator of ultrasound neuromodulation in the brain, laying the ground for further mechanistic studies of ultrasound.


Asunto(s)
Corteza Auditiva , Encéfalo , Ratones , Animales , Encéfalo/fisiología , Corteza Auditiva/metabolismo , Ultrasonografía , Neuronas/metabolismo , Ratones Noqueados , Canales Iónicos/genética , Canales Iónicos/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(22): e2220575120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216521

RESUMEN

Noninvasive control of neuronal activity in the deep brain can be illuminating for probing brain function and treating dysfunctions. Here, we present a sonogenetic approach for controlling distinct mouse behavior with circuit specificity and subsecond temporal resolution. Targeted neurons in subcortical regions were made to express a mutant large conductance mechanosensitive ion channel (MscL-G22S), enabling ultrasound to trigger activity in MscL-expressing neurons in the dorsal striatum and increase locomotion in freely moving mice. Ultrasound stimulation of MscL-expressing neurons in the ventral tegmental area could activate the mesolimbic pathway to trigger dopamine release in the nucleus accumbens and modulate appetitive conditioning. Moreover, sonogenetic stimulation of the subthalamic nuclei of Parkinson's disease model mice improved their motor coordination and mobile time. Neuronal responses to ultrasound pulse trains were rapid, reversible, and repeatable. We also confirmed that the MscL-G22S mutant is more effective to sensitize neurons to ultrasound compared to the wild-type MscL. Altogether, we lay out a sonogenetic approach which can selectively manipulate targeted cells to activate defined neural pathways, affect specific behaviors, and relieve symptoms of neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , Núcleo Subtalámico , Ratones , Animales , Encéfalo , Núcleo Subtalámico/fisiología , Núcleo Accumbens , Dopamina/fisiología , Vías Nerviosas
3.
Proc Natl Acad Sci U S A ; 119(46): e2206828119, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343238

RESUMEN

Focused ultrasound (FUS) is a powerful tool for noninvasive modulation of deep brain activity with promising therapeutic potential for refractory epilepsy; however, tools for examining FUS effects on specific cell types within the deep brain do not yet exist. Consequently, how cell types within heterogeneous networks can be modulated and whether parameters can be identified to bias these networks in the context of complex behaviors remains unknown. To address this, we developed a fiber Photometry Coupled focused Ultrasound System (PhoCUS) for simultaneously monitoring FUS effects on neural activity of subcortical genetically targeted cell types in freely behaving animals. We identified a parameter set that selectively increases activity of parvalbumin interneurons while suppressing excitatory neurons in the hippocampus. A net inhibitory effect localized to the hippocampus was further confirmed through whole brain metabolic imaging. Finally, these inhibitory selective parameters achieved significant spike suppression in the kainate model of chronic temporal lobe epilepsy, opening the door for future noninvasive therapies.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Animales , Epilepsia/terapia , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Ultrasonografía , Hipocampo/diagnóstico por imagen
4.
Cell Physiol Biochem ; 49(5): 1825-1839, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30231241

RESUMEN

BACKGROUND/AIMS: Sonodynamic therapy (SDT), based on the synergistic effect of low-intensity ultrasound and sonosensitizer, is a potential approach for non-invasive treatment of cancers. In SDT, mitochondria played a crucial role in cell fate determination. However, mitochondrial activities and their response to SDT remain elusive. The purpose of this study was to examine the response of mitochondria to SDT in tumor cells. METHODS: A human breast adenocarcinoma cell line - MCF-7 cells were subjected to 5-aminolevulinic acid (ALA)-SDT, with an average ultrasonic intensity of 0.25W/cm2. Mitochondrial dynamics and redox balance were examined by confocal immunofluorescence microscopy and western blot. The occurrence of mitophagy was determined by confocal immunofluorescence microscopy. RESULTS: Our results showed that ALA-SDT could induce mitochondrial dysfunction through mitochondrial depolarization and fragmentation and lead to mitophagy. The Parkin-dependent signaling pathway was involved and promoted resistance to ALA-SDT induced cell death. Finally, excessive production of ROS was found to be necessary for the initiation of mitophagy. CONCLUSION: Taken together, we conclude that ROS produced by 5-ALA-SDT could initiate PINK1/Parkin-mediated mitophagy which may exert a protective effect against 5-ALA-SDT-induced cell death in MCF-7 cells.


Asunto(s)
Mitofagia/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Proteínas Quinasas/metabolismo , Sonicación/métodos , Ubiquitina-Proteína Ligasas/metabolismo , Ácido Aminolevulínico/farmacología , Apoptosis/efectos de los fármacos , Humanos , Células MCF-7 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética
5.
Adv Exp Med Biol ; 923: 359-365, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27526164

RESUMEN

Characterizing port wine stains (PWS) with its optical parameters [i.e. absorption coefficient (µ a) and reduced scattering coefficient (µ s')] and microvascular parameters [i.e. blood volume fraction (BVF), mean vessel diameter (MVD), and oxygen saturation (StO2)] is extremely important for elucidating the mechanisms for its light-based treatments, such as pulsed dye laser and photodynamic therapy. In this study, a customized diffuse reflectance spectroscopy (DRS) probe with an appropriate source-detector distance was used to measure the diffuse reflectance spectra of PWS lesions in clinical practice. The results demonstrate that optical parameters of different types of PWS lesions can be accurately extracted by fitting the DRS with diffusion equation. Since the sampling depth of the probe coincides with the depth distribution of abnormal vasculature in PWS, the obtained microvascular parameters of PWS lesions that changed from pink to purple are in agreement with the corresponding physiological conditions. This study suggests that DRS can be utilized to quantitatively determine the optical and microvascular parameters of PWS lesions, which have the potential for planning the protocol and predicting the efficiency for light-based PWS treatments.


Asunto(s)
Microcirculación , Óptica y Fotónica/métodos , Oxígeno/sangre , Mancha Vino de Oporto/metabolismo , Piel/irrigación sanguínea , Análisis Espectral/métodos , Adolescente , Adulto , Biomarcadores/sangre , Niño , Preescolar , Estudios de Factibilidad , Femenino , Humanos , Lactante , Masculino , Mancha Vino de Oporto/diagnóstico , Mancha Vino de Oporto/fisiopatología , Mancha Vino de Oporto/terapia , Valor Predictivo de las Pruebas , Pronóstico , Procesamiento de Señales Asistido por Computador , Adulto Joven
6.
ACS Chem Neurosci ; 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39448062

RESUMEN

Ultrasound neuromodulation is a promising noninvasive technique capable of penetrating the skull and precisely targeting deep brain regions with millimeter accuracy. Recent studies have demonstrated that transcranial ultrasound stimulation (TUS) of sleep-related brain areas can induce sleep in mice and even trigger a reversible, hibernation-like state without causing damage. Beyond its utility in preclinical models of central nervous system diseases, such as epilepsy, tremors, Alzheimer's disease, and depression, TUS holds significant potential for clinical translation. Given that many neurological disorders, including Alzheimer's and Parkinson's disease, are associated with sleep abnormalities, leveraging clinical TUS applications for these diseases also creates a pathway for translating this technology to sleep modulation in human use. These findings highlight the potential for ultrasound neuromodulation to advance neuroscience research and clinical applications in sleep control.

7.
IEEE Trans Biomed Eng ; 71(2): 524-530, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37656645

RESUMEN

Ultra-high frequency (>100 MHz) acoustic waves feature biocompatibility and high sensitivity and allow biomedical imaging and acoustic tweezers. Primarily, excellent spatial resolution and broad bandwidth at ultra-high frequency is the goal for pathological research and cell selection at the cellular level. Here, we propose an efficient approach to visualize mouse brain atrophy by self-focused ultrasonic sensors at ultra-high frequency with ultra-broad bandwidth. The numerical models of geometry and theoretically predicted acoustic parameters for half-concave piezoelectric elements are calculated by the differential method, which agrees with measured results (lateral resolution: 24 µm, and bandwidth: 115% at -6 dB). Compared with the brain slices of 2-month-old mouse, the atrophy visualization of the 6-month-old mouse brain was realized by C-mode imaging with an acoustic microscopy system, which is a potential prospect for diagnosis and treatment of Alzheimer's disease (AD) combined with neuroscience. Meanwhile, the acoustic properties of the brain slices were quantitatively measured by the acoustic microscopy. These encouraging results demonstrate the promising application for high-resolution imaging in vitro biological tissue with ultra-high frequency self-focusing ultrasonic sensors.


Asunto(s)
Diagnóstico por Imagen , Ultrasonido , Ratones , Animales , Acústica , Encéfalo/diagnóstico por imagen , Atrofia
8.
J Vis Exp ; (211)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39311619

RESUMEN

Focused ultrasound neuromodulation (FUN) represents a promising approach for non-invasive perturbation of neuronal circuits at deep brain regions. It is compatible with most of the existing modalities for monitoring brain functions in vivo. Integration with brain function recording modalities not only enables us to address orders and disorders of specific brain functions with closed-loop feedback but also provides us with mechanistic insights about FUN itself. Here, we provide a modified, simple, dependable, and robust protocol for the simultaneous application of FUN and fiber photometry GCaMP6s fluorescence recording in free-moving mice. This involves the fabrication of a well-sized single transducer and its temporary placement on the mice, along with the secure fixation of a fiber optical implant to facilitate the smooth passage of the transducer. The combination of FUN and fiber photometry provides for the optical recording of neural circuitry responses upon FUN in real-time in deep brain regions. To demonstrate the efficiency of this protocol, Thy1-GCaMP6s mice were used as an example to record the neuroactivity in the anterior thalamic nucleus during FUN while the mice are freely moving. We believe that this protocol can promote the widespread use of FUN in both the neuroscience field and the biomedical ultrasound field.


Asunto(s)
Fotometría , Animales , Ratones , Fotometría/instrumentación , Fotometría/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen
9.
Nat Commun ; 15(1): 2253, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480733

RESUMEN

Ultrasound is an acoustic wave which can noninvasively penetrate the skull to deep brain regions, enabling neuromodulation. However, conventional ultrasound's spatial resolution is diffraction-limited and low-precision. Here, we report acoustic nanobubble-mediated ultrasound stimulation capable of localizing ultrasound's effects to only the desired brain region in male mice. By varying the delivery site of nanobubbles, ultrasound could activate specific regions of the mouse motor cortex, evoking EMG signaling and limb movement, and could also, separately, activate one of two nearby deep brain regions to elicit distinct behaviors (freezing or rotation). Sonicated neurons displayed reversible, low-latency calcium responses and increased c-Fos expression in the sub-millimeter-scale region with nanobubbles present. Ultrasound stimulation of the relevant region also modified depression-like behavior in a mouse model. We also provide evidence of a role for mechanosensitive ion channels. Altogether, our treatment scheme allows spatially-targetable, repeatable and temporally-precise activation of deep brain circuits for neuromodulation without needing genetic modification.


Asunto(s)
Encéfalo , Cráneo , Masculino , Animales , Ratones , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Ultrasonografía , Ondas Ultrasónicas , Movimiento
10.
Heliyon ; 9(3): e14227, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36950590

RESUMEN

The sound velocity in a medium is closely related to its material properties, including its composition, structure, density, pressure, and temperature. Various methods have been developed to determine the sound velocity through materials. Among them, a strategy based on ultrasound resonance frequency has been most widely used due to the simplicity. However, it requires a transducer with a wide bandwidth to cover enough resonance frequencies to perform the consequent calculations. In this paper, we develop a resonance method for measuring sound velocity, using multi-frequency narrow-band transducers breaking through the limitation of transducer bandwidth on the utilization of the resonance method. We use different transducers at different center frequencies and with different bandwidth to measure the sound velocity in 100-µm and 400-µm thick steel pieces. The measurement results of different combinations are in good agreement, verifying that the use of multi-frequency narrow-band transducer combinations. Given that most therapeutic transducers have a narrow bandwidth, this method can be used during intracranial ultrasound stimulation to optimize targeting by non-invasively measuring the sound velocity in the skull, especially at thinner locations.

11.
Front Psychol ; 13: 897339, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846635

RESUMEN

Background: Parenting style and resilience are independently associated with symptoms of depression and anxiety. However, no study has tested the interaction effects between the patterns of parenting style and resilience on mental health in adolescent populations. Therefore, this study aimed to explore the interaction effects between the patterns of parenting style and resilience on depression/anxiety symptoms among middle school students in China. Methods: A sample of 2,179 Chinese middle school students were included in this study. Latent profile analysis (LPA) was used to examine parenting style patterns. Multivariable logistic regression was used to analyze the associations of different parenting patterns and resilience with depression/anxiety symptoms, as well as the interaction effect. Results: Latent profile analysis results showed that the most suitable model included three-profile solution, which were labeled as positive parenting, negative parenting, and moderate parenting. Subsequent analyses indicated that students across profiles exhibited significant differences in their depression/anxiety symptoms. Specifically, compared to moderate parenting, negative parenting was positively associated with depression/anxiety symptoms, while positive parenting was negatively associated with these symptoms. Moreover, low levels of resilience were positively associated with depression/anxiety symptoms compared to a high level of resilience. Although the interaction effect was not significant, there were differences in the associations between different parenting patterns and symptoms of depression and anxiety when stratifying resilience. Conclusion: The present study identified three-profile solution of parenting styles among Chinese middle school students using LPA as a person-centered approach. Future interventions targeting depression/anxiety symptoms in adolescents may consider the potential influence of patterns of parenting styles, or improved resilience, to achieve better intervention outcomes.

12.
Front Neurosci ; 16: 893108, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35801172

RESUMEN

Transcranial ultrasound stimulation (TUS) is a young neuromodulation technology, which uses ultrasound to achieve non-invasive stimulation or inhibition of deep intracranial brain regions, with the advantages of non-invasive, deep penetration, and high resolution. It is widely considered to be one of the most promising techniques for probing brain function and treating brain diseases. In preclinical studies, developing miniaturized transducers to facilitate neuromodulation in freely moving small animals is critical for understanding the mechanism and exploring potential applications. In this article, a miniaturized transducer with a half-concave structure is proposed. Based on the finite element simulation models established by PZFlex software, several ultrasound transducers with different concave curvatures were designed and analyzed. Based on the simulation results, half-concave focused ultrasonic transducers with curvature radii of 5 mm and 7.5 mm were fabricated. Additionally, the emission acoustic fields of the ultrasonic transducers with different structures were characterized at their thickness resonance frequencies of 1 MHz using a multifunctional ultrasonic test platform built in the laboratory. To verify the practical ability for neuromodulation, different ultrasound transducers were used to induce muscle activity in mice. As a result, the stimulation success rates were (32 ± 10)%, (65 ± 8)%, and (84 ± 7)%, respectively, by using flat, #7, and #5 transducers, which shows the simulation and experimental results have a good agreement and that the miniaturized half-concave transducer could effectively converge the acoustic energy and achieve precise and effective ultrasonic neuromodulation.

13.
Brain Stimul ; 15(5): 1308-1317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36130679

RESUMEN

Sonogenetics refers to the use of genetically encoded, ultrasound-responsive mediators for noninvasive and selective control of neural activity. It is a promising tool for studying neural circuits. However, due to its infancy, basic studies and developments are still underway, including gauging key in vivo performance metrics such as spatiotemporal resolution, selectivity, specificity, and safety. In this paper, we summarize recent findings on sonogenetics to highlight technical hurdles that have been cleared, challenges that remain, and future directions for optimization.


Asunto(s)
Encéfalo , Encéfalo/diagnóstico por imagen , Ultrasonografía
14.
Adv Sci (Weinh) ; 9(12): e2104140, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35187865

RESUMEN

Optogenetics has become a widely used technique in neuroscience research, capable of controlling neuronal activity with high spatiotemporal precision and cell-type specificity. Expressing exogenous opsins in the selected cells can induce neuronal activation upon light irradiation, and the activation depends on the power of incident light. However, high optical power can also lead to off-target neuronal activation or even cell damage. Limiting the incident power, but enhancing power distribution to the targeted neurons, can improve optogenetic efficiency and reduce off-target effects. Here, the use of optical lenses made of polystyrene microspheres is demonstrated to achieve effective focusing of the incident light of relatively low power to neighboring neurons via photonic jets. The presence of microspheres significantly localizes and enhances the power density to the target neurons both in vitro and ex vivo, resulting in increased inward current and evoked action potentials. In vivo results show optogenetic stimulation with microspheres that can evoke significantly more motor behavior and neuronal activation at lowered power density. In all, a proof-of-concept of a strategy is demonstrated to increase the efficacy of optogenetic neuromodulation using pulses of reduced optical power.


Asunto(s)
Opsinas , Optogenética , Potenciales de Acción , Neuronas/fisiología , Optogenética/métodos , Fotones
15.
Artículo en Inglés | MEDLINE | ID: mdl-33556006

RESUMEN

Ultrasound brain stimulation is a promising modality for probing brain function and treating brain diseases. However, its mechanism is as yet unclear, and in vivo effects are not well-understood. Here, we present a top-down strategy for assessing ultrasound bioeffects in vivo, using Caenorhabditis elegans. Behavioral and functional changes of single worms and of large populations upon ultrasound stimulation were studied. Worms were observed to significantly increase their average speed upon ultrasound stimulation, adapting to it upon continued treatment. Worms also generated more reversal turns when ultrasound was ON, and within a minute post-stimulation, they performed significantly more reversal and omega turns than prior to ultrasound. In addition, in vivo calcium imaging showed that the neural activity in the worms' heads and tails was increased significantly by ultrasound stimulation. In all, we conclude that ultrasound can directly activate the neurons of worms in vivo, in both of their major neuronal ganglia, and modify their behavior.


Asunto(s)
Caenorhabditis elegans , Calcio , Animales
16.
Micromachines (Basel) ; 12(11)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34832726

RESUMEN

Evolvable acoustic fields are considered an effective method for solving technical problems related to fields such as biological imaging, particle manipulation, drug therapy and intervention. However, because of technical difficulties and the limited technology available for realizing flexible adjustments of sound fields, few studies have reported on this aspect in recent years. Herein, we propose a novel solution, using a Fresnel lens-focused ultrasonic transducer for generating excited-signal-dependent acoustic pressure patterns. Finite element analysis (FEA) is used to predict the performance of a transducer with a Fresnel lens. The Fresnel lens is printed using 3D additive manufacturing. Normalized intensity maps of the acoustic pressure fields are characterized from the Fresnel lens-focused transducer under various numbers of excited-signal cycles. The results demonstrate that under different cycle excitations, a temporal evolution acoustic intensity can be generated and regulated by an ultrasound transducer with a 3D Fresnel lens. This acoustical pattern control method is not only simple to realize but also has considerable application prospects.

17.
Acta Biomater ; 136: 533-545, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34530143

RESUMEN

Sonodynamic therapy (SDT) is a promising alternative for cancer therapy, understood to exert cytotoxicity through cavitation and subsequent production of large amounts of reactive oxygen species (ROS). Gas-filled protein nanostructures (gas vesicles or GVs) produced by cyanobacteria have a hollow structure similar to microbubbles and have demonstrated comparable enhancement of ultrasound imaging contrast. We thus hypothesized that GVs may act as stable nuclei for inertial cavitation to enhance SDT with improved enhanced permeability and retention (EPR) effects due to their nanometer scale. The function of GVs to mediate cavitation, ROS production, and cell-targeted toxicity under SDT was determined. In solution, we found that GVs successfully increased cavitation and enhanced ROS production in a dose- and time-dependent manner. Then, GV surfaces were modified (FGVs) to specifically target CD44+ cells and accumulate preferentially at the tumor site. In vitro sonodynamic therapy (SDT) showed ROS production and tumor cell toxicity substantially elevated in the presence of FGVs, and the addition of FGVs was found to enhance cavitation and subsequently inhibit tumor growth and exert greater damage to tumors under SDT in vivo. Our results thus demonstrate that FGVs can function as stable, nanosized, nuclei for spatially accurate and cell-targeted SDT. STATEMENT OF SIGNIFICANCE: The initiation of inertial cavitation is critical for ROS generation and subsequent cellular toxicity in SDT. Thus, precise control of the occurrence of cavitation is a key factor in increasing SDT's therapeutic efficacy. We explored nanometer-sized gas vesicles (GVs) as a new class of cavitation nuclei for molecule-specific sonodynamic therapy. Our results showed that GV-mediated SDT treatment enabled targeted disruption of specific cells expressing a known surface marker within the area of insonation, providing a spatially specific and targeted SDT treatment.


Asunto(s)
Nanoestructuras , Terapia por Ultrasonido , Línea Celular Tumoral , Microburbujas , Especies Reactivas de Oxígeno
18.
Adv Sci (Weinh) ; 8(21): e2101934, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34546652

RESUMEN

Ultrasound is a promising new modality for non-invasive neuromodulation. Applied transcranially, it can be focused down to the millimeter or centimeter range. The ability to improve the treatment's spatial resolution to a targeted brain region could help to improve its effectiveness, depending upon the application. The present paper details a neurostimulation scheme using gas-filled nanostructures, gas vesicles (GVs), as actuators for improving the efficacy and precision of ultrasound stimuli. Sonicated primary neurons display dose-dependent, repeatable Ca2+ responses, closely synced to stimuli, and increased nuclear expression of the activation marker c-Fos in the presence of GVs. GV-mediated ultrasound triggered rapid and reversible Ca2+ responses in vivo and could selectively evoke neuronal activation in a deep-seated brain region. Further investigation indicate that mechanosensitive ion channels are important mediators of this effect. GVs themselves and the treatment scheme are also found not to induce significant cytotoxicity, apoptosis, or membrane poration in treated cells. Altogether, this study demonstrates a simple and effective method to achieve enhanced and better-targeted neurostimulation with non-invasive low-intensity ultrasound.


Asunto(s)
Nanoestructuras/química , Ondas Ultrasónicas , Liposomas Unilamelares/química , Área Tegmental Ventral/metabolismo , Anabaena/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Embrión de Mamíferos/citología , Gases/química , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Neuronas/efectos de la radiación , Ratas , Liposomas Unilamelares/metabolismo , Área Tegmental Ventral/patología , Área Tegmental Ventral/efectos de la radiación
19.
iScience ; 24(1): 101988, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33490898

RESUMEN

Acoustic micro-beams produced by highly focused ultrasound transducer have been investigated for micro-particle and cell manipulation. Here we report the selective trapping of microspheres via the acoustic force using the single acoustical beam. The forbidden band theory of acoustic radiation force trapping is proposed, which indicates that the trapping of particles via the acoustic beam is directly related to the particle diameter-to-beam wavelength ratio as well as excitation frequency of the ultrasonic acoustic tweezers. Three tightly focused LiNbO3 transducers with different center frequencies were fabricated for use as selective single beam acoustic tweezers (SBATs). These SBATs were capable of selectively manipulating microspheres of sizes 5-45 µm by adjusting the wavelength of acoustic beam. Our observations could introduce new avenues for research in biology and biophysics by promoting the development of a tool for selectively manipulating microspheres or cells of certain selected sizes, by carefully setting the acoustic beam shape and wavelength.

20.
STAR Protoc ; 2(2): 100393, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33796870

RESUMEN

Manipulating specific neural activity by targeted ultrasound intervention is a powerful method to gain causal insight into brain functions and treat brain disorders. The technique of sonogenetics enables controlling of cells that are genetically modulated with ultrasound-sensitive ion channels. Here, we detail the preparations, surgical procedures, ultrasound stimulation process, and simultaneous electromyogram (EMG) measurement necessary for successful sonogenetic stimulation in mice. For complete details on the use and execution of this protocol, please refer to Qiu et al. (2020).


Asunto(s)
Encéfalo , Técnicas Genéticas , Ondas Ultrasónicas , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Encéfalo/efectos de la radiación , Electromiografía , Técnica del Anticuerpo Fluorescente , Ratones , Neuronas/metabolismo , Neuronas/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA